Add files using upload-large-folder tool
Browse files- processing_step3.py +465 -0
- processor_config.json +2 -2
processing_step3.py
ADDED
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.processing_utils import ImagesKwargs, MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs
|
2 |
+
import math
|
3 |
+
from typing import Iterable, Optional, Tuple, List, TypedDict, Literal, Union, overload
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
import torchvision
|
9 |
+
from transformers.image_utils import ImageInput, make_nested_list_of_images
|
10 |
+
from torch import nn
|
11 |
+
from torch.nn import functional as F, LayerNorm
|
12 |
+
from torchvision.transforms.functional import InterpolationMode
|
13 |
+
from transformers.activations import ACT2FN
|
14 |
+
from torchvision import transforms
|
15 |
+
from torchvision.transforms.functional import InterpolationMode
|
16 |
+
from transformers.feature_extraction_utils import BatchFeature
|
17 |
+
from transformers.image_utils import ImageInput
|
18 |
+
from transformers.processing_utils import ImagesKwargs, MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack
|
19 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
20 |
+
from transformers.utils import logging
|
21 |
+
from transformers.video_utils import VideoInput
|
22 |
+
from transformers import BatchFeature, PretrainedConfig, TensorType
|
23 |
+
from transformers.image_utils import make_flat_list_of_images
|
24 |
+
from math import ceil
|
25 |
+
from itertools import product
|
26 |
+
from transformers import LlamaTokenizerFast
|
27 |
+
|
28 |
+
|
29 |
+
MAX_IMAGE_SIZE: int = 3024
|
30 |
+
|
31 |
+
class Step3VLImagePixelInputs(TypedDict):
|
32 |
+
type: Literal["pixel_values"]
|
33 |
+
pixel_values: torch.Tensor
|
34 |
+
patch_pixel_values: Optional[torch.Tensor]
|
35 |
+
num_patches: list[int]
|
36 |
+
|
37 |
+
|
38 |
+
class Step3VLImageEmbeddingInputs(TypedDict):
|
39 |
+
type: Literal["image_embeds"]
|
40 |
+
image_embeds: torch.Tensor
|
41 |
+
|
42 |
+
|
43 |
+
Step3VLImageInputs = Union[Step3VLImagePixelInputs,
|
44 |
+
Step3VLImageEmbeddingInputs]
|
45 |
+
|
46 |
+
ImageWithPatches = tuple[Image.Image, list[Image.Image], list[int] | None]
|
47 |
+
|
48 |
+
|
49 |
+
class GPUToTensor(torch.nn.Module):
|
50 |
+
|
51 |
+
def forward(self, raw_image: Union[np.ndarray,
|
52 |
+
Image.Image]) -> torch.Tensor:
|
53 |
+
if isinstance(raw_image, Image.Image):
|
54 |
+
return transforms.ToTensor()(raw_image)
|
55 |
+
if raw_image.ndim == 2:
|
56 |
+
raw_image = raw_image[:, :, None].repeat(3, -1)
|
57 |
+
if torch.cuda.is_available():
|
58 |
+
device = torch.device("cuda")
|
59 |
+
else:
|
60 |
+
device = torch.device("cpu")
|
61 |
+
image_tensor = torch.from_numpy(raw_image).to(device)
|
62 |
+
image_tensor = torch.permute(image_tensor, (2, 0, 1)).contiguous()
|
63 |
+
if image_tensor.dtype == torch.uint8:
|
64 |
+
image_tensor = image_tensor.to(torch.float32).div(255)
|
65 |
+
return image_tensor
|
66 |
+
|
67 |
+
class Step3VisionProcessor:
|
68 |
+
|
69 |
+
def __init__(self, size, interpolation_mode="bicubic", patch_size=None):
|
70 |
+
mean = [0.48145466, 0.4578275, 0.40821073]
|
71 |
+
std = [0.26862954, 0.26130258, 0.27577711]
|
72 |
+
patch_size = patch_size if patch_size is not None else size
|
73 |
+
|
74 |
+
self.transform = transforms.Compose([
|
75 |
+
GPUToTensor(),
|
76 |
+
transforms.Normalize(mean, std),
|
77 |
+
transforms.Resize(
|
78 |
+
(size, size),
|
79 |
+
interpolation=InterpolationMode.BICUBIC if interpolation_mode
|
80 |
+
== "bicubic" else InterpolationMode.BILINEAR,
|
81 |
+
antialias=True),
|
82 |
+
])
|
83 |
+
|
84 |
+
self.patch_transform = transforms.Compose([
|
85 |
+
GPUToTensor(),
|
86 |
+
transforms.Normalize(mean, std),
|
87 |
+
transforms.Resize(
|
88 |
+
(patch_size, patch_size),
|
89 |
+
interpolation=InterpolationMode.BICUBIC if interpolation_mode
|
90 |
+
== "bicubic" else InterpolationMode.BILINEAR,
|
91 |
+
antialias=True),
|
92 |
+
]) if patch_size is not None else None
|
93 |
+
|
94 |
+
def __call__(self, image, is_patch=False):
|
95 |
+
if is_patch:
|
96 |
+
return {"pixel_values": self.patch_transform(image).unsqueeze(0)}
|
97 |
+
else:
|
98 |
+
return {"pixel_values": self.transform(image).unsqueeze(0)}
|
99 |
+
|
100 |
+
class ImagePatcher:
|
101 |
+
def determine_window_size(self, long: int, short: int) -> int:
|
102 |
+
if long <= 728:
|
103 |
+
return short if long / short > 1.5 else 0
|
104 |
+
return min(short, 504) if long / short > 4 else 504
|
105 |
+
def slide_window(
|
106 |
+
self,
|
107 |
+
width: int,
|
108 |
+
height: int,
|
109 |
+
sizes: list[tuple[int, int]],
|
110 |
+
steps: list[tuple[int, int]],
|
111 |
+
img_rate_thr: float = 0.6,
|
112 |
+
) -> tuple[list[tuple[int, int, int, int]], tuple[int, int]]:
|
113 |
+
assert 1 >= img_rate_thr >= 0, "The `in_rate_thr` should lie in 0~1"
|
114 |
+
windows = []
|
115 |
+
# Sliding windows.
|
116 |
+
for size, step in zip(sizes, steps):
|
117 |
+
size_w, size_h = size
|
118 |
+
step_w, step_h = step
|
119 |
+
|
120 |
+
x_num = 1 if width <= size_w else ceil((width - size_w) / step_w +
|
121 |
+
1)
|
122 |
+
x_start = [step_w * i for i in range(x_num)]
|
123 |
+
if len(x_start) > 1 and x_start[-1] + size_w > width:
|
124 |
+
x_start[-1] = width - size_w
|
125 |
+
|
126 |
+
y_num = 1 if height <= size_h else ceil((height - size_h) /
|
127 |
+
step_h + 1)
|
128 |
+
y_start = [step_h * i for i in range(y_num)]
|
129 |
+
if len(y_start) > 1 and y_start[-1] + size_h > height:
|
130 |
+
y_start[-1] = height - size_h
|
131 |
+
|
132 |
+
start = np.array(list(product(y_start, x_start)), dtype=int)
|
133 |
+
start[:, [0, 1]] = start[:, [1, 0]]
|
134 |
+
windows.append(np.concatenate([start, start + size], axis=1))
|
135 |
+
windows = np.concatenate(windows, axis=0)
|
136 |
+
|
137 |
+
return [(int(box[0]), int(box[1]), int(box[2] - box[0]),
|
138 |
+
int(box[3] - box[1])) for box in windows], (x_num, y_num)
|
139 |
+
|
140 |
+
def square_pad(self, img: Image.Image) -> Image.Image:
|
141 |
+
w, h = img.size
|
142 |
+
if w == h:
|
143 |
+
return img
|
144 |
+
size = max(w, h)
|
145 |
+
padded = Image.new(img.mode, (size, size), 0)
|
146 |
+
padded.paste(img, (0, 0))
|
147 |
+
return padded
|
148 |
+
|
149 |
+
def get_image_size_for_padding(self, img_width: int,
|
150 |
+
img_height: int) -> tuple[int, int]:
|
151 |
+
ratio = img_width / img_height
|
152 |
+
if min(img_height, img_width) < 32 and (ratio > 4 or ratio < 1 / 4):
|
153 |
+
new_size = max(img_height, img_width)
|
154 |
+
return new_size, new_size
|
155 |
+
return img_width, img_height
|
156 |
+
|
157 |
+
def get_image_size_for_preprocess(self, img_width: int,
|
158 |
+
img_height: int) -> tuple[int, int]:
|
159 |
+
|
160 |
+
if max(img_height, img_width) > MAX_IMAGE_SIZE:
|
161 |
+
scale_factor = MAX_IMAGE_SIZE / max(img_height, img_width)
|
162 |
+
img_width = int(img_width * scale_factor)
|
163 |
+
img_height = int(img_height * scale_factor)
|
164 |
+
return img_width, img_height
|
165 |
+
|
166 |
+
def get_image_size_for_crop(self, img_width: int, img_height: int,
|
167 |
+
window_size: int):
|
168 |
+
w_ratio = img_width / window_size
|
169 |
+
h_ratio = img_height / window_size
|
170 |
+
|
171 |
+
if w_ratio < 1:
|
172 |
+
width_new = img_width
|
173 |
+
else:
|
174 |
+
decimal_w = w_ratio - img_width // window_size
|
175 |
+
w_ratio = int(w_ratio) + 1 if decimal_w > 0.2 else int(w_ratio)
|
176 |
+
width_new = window_size * w_ratio
|
177 |
+
if h_ratio < 1:
|
178 |
+
height_new = img_height
|
179 |
+
else:
|
180 |
+
decimal_h = h_ratio - img_height // window_size
|
181 |
+
h_ratio = int(h_ratio) + 1 if decimal_h > 0.2 else int(h_ratio)
|
182 |
+
height_new = window_size * h_ratio
|
183 |
+
return int(width_new), int(height_new)
|
184 |
+
|
185 |
+
def patch_crop(self, img: Image.Image, i: int, j: int, th: int, tw: int):
|
186 |
+
target = img.crop((j, i, j + tw, i + th))
|
187 |
+
return target
|
188 |
+
|
189 |
+
def get_num_patches(self, img_width: int,
|
190 |
+
img_height: int) -> tuple[int, int]:
|
191 |
+
img_width, img_height = self.get_image_size_for_padding(
|
192 |
+
img_width, img_height)
|
193 |
+
img_width, img_height = self.get_image_size_for_preprocess(
|
194 |
+
img_width, img_height)
|
195 |
+
window_size = self.determine_window_size(max(img_height, img_width),
|
196 |
+
min(img_height, img_width))
|
197 |
+
if window_size == 0:
|
198 |
+
return 0, 0
|
199 |
+
else:
|
200 |
+
img_width, img_height = self.get_image_size_for_crop(
|
201 |
+
img_width, img_height, window_size)
|
202 |
+
center_list, (x_num, y_num) = self.slide_window(
|
203 |
+
img_width, img_height, [(window_size, window_size)],
|
204 |
+
[(window_size, window_size)])
|
205 |
+
full_rows = (len(center_list) - 1) // x_num + 1
|
206 |
+
if len(center_list) > 0 and len(center_list) % x_num == 0:
|
207 |
+
full_rows -= 1
|
208 |
+
return len(center_list), full_rows
|
209 |
+
|
210 |
+
def __call__(
|
211 |
+
self, img: Image.Image
|
212 |
+
) -> tuple[Image.Image, list[Image.Image], list[bool] | None]:
|
213 |
+
img_width, img_height = img.size
|
214 |
+
new_img_width, new_img_height = self.get_image_size_for_padding(
|
215 |
+
img_width, img_height)
|
216 |
+
if new_img_width != img_width or new_img_height != img_height:
|
217 |
+
img = self.square_pad(img)
|
218 |
+
img_width, img_height = img.size
|
219 |
+
|
220 |
+
new_img_width, new_img_height = self.get_image_size_for_preprocess(
|
221 |
+
img_width, img_height)
|
222 |
+
img = img.resize((new_img_width, new_img_height),
|
223 |
+
Image.Resampling.BILINEAR)
|
224 |
+
window_size = self.determine_window_size(
|
225 |
+
max(new_img_height, new_img_width),
|
226 |
+
min(new_img_height, new_img_width))
|
227 |
+
|
228 |
+
if window_size == 0:
|
229 |
+
return img, [], None
|
230 |
+
else:
|
231 |
+
new_img_width, new_img_height = self.get_image_size_for_crop(
|
232 |
+
new_img_width, new_img_height, window_size)
|
233 |
+
if (new_img_width, new_img_height) != (img_width, img_height):
|
234 |
+
img_for_crop = img.resize((new_img_width, new_img_height),
|
235 |
+
Image.Resampling.BILINEAR)
|
236 |
+
else:
|
237 |
+
img_for_crop = img
|
238 |
+
|
239 |
+
patches = []
|
240 |
+
newlines = []
|
241 |
+
center_list, (x_num, y_num) = self.slide_window(
|
242 |
+
new_img_width, new_img_height, [(window_size, window_size)],
|
243 |
+
[(window_size, window_size)])
|
244 |
+
for patch_id, center_lf_point in enumerate(center_list):
|
245 |
+
x, y, patch_w, patch_h = center_lf_point
|
246 |
+
big_patch = self.patch_crop(img_for_crop, y, x, patch_h,
|
247 |
+
patch_w)
|
248 |
+
patches.append(big_patch)
|
249 |
+
if (patch_id + 1) % x_num == 0:
|
250 |
+
newlines.append(patch_id)
|
251 |
+
|
252 |
+
if newlines and newlines[-1] == len(patches) - 1:
|
253 |
+
newlines.pop()
|
254 |
+
|
255 |
+
return img, patches, [i in newlines for i in range(len(patches))] if len(patches) > 0 else None
|
256 |
+
|
257 |
+
class Step3VLProcessor(ProcessorMixin):
|
258 |
+
attributes = ["tokenizer"]
|
259 |
+
tokenizer_class = "AutoTokenizer"
|
260 |
+
|
261 |
+
def __init__(
|
262 |
+
self,
|
263 |
+
tokenizer,
|
264 |
+
chat_template=None,
|
265 |
+
**kwargs
|
266 |
+
) -> None:
|
267 |
+
self.image_size = 728
|
268 |
+
self.patch_size = 504
|
269 |
+
|
270 |
+
self.image_preprocessor = Step3VisionProcessor(self.image_size,
|
271 |
+
"bilinear",
|
272 |
+
self.patch_size)
|
273 |
+
|
274 |
+
self.num_image_feature_size = 169
|
275 |
+
self.num_patch_feature_size = 81
|
276 |
+
self.image_token = "<im_patch>"
|
277 |
+
self.image_feature_placeholder = (self.image_token *
|
278 |
+
self.num_image_feature_size)
|
279 |
+
self.patch_feature_placeholder = (self.image_token *
|
280 |
+
self.num_patch_feature_size)
|
281 |
+
|
282 |
+
self.patcher = ImagePatcher()
|
283 |
+
super().__init__(tokenizer=tokenizer, chat_template=chat_template, **kwargs)
|
284 |
+
|
285 |
+
@property
|
286 |
+
def image_token_id(self) -> int:
|
287 |
+
return self.tokenizer.get_vocab()[self.image_token]
|
288 |
+
|
289 |
+
def get_num_image_tokens(self, img_width: int, img_height: int) -> int:
|
290 |
+
num_patches, num_newlines = self.patcher.get_num_patches(
|
291 |
+
img_width, img_height)
|
292 |
+
|
293 |
+
return num_patches * (
|
294 |
+
self.num_patch_feature_size +
|
295 |
+
2) + self.num_image_feature_size + 2 + num_newlines
|
296 |
+
|
297 |
+
def _split_images(self,
|
298 |
+
images: list[Image.Image]) -> list[ImageWithPatches]:
|
299 |
+
result = []
|
300 |
+
for img in images:
|
301 |
+
result.append(self.patcher(img))
|
302 |
+
return result
|
303 |
+
|
304 |
+
def _convert_images_to_pixel_values(
|
305 |
+
self,
|
306 |
+
images: list[Image.Image],
|
307 |
+
is_patch: bool = False,
|
308 |
+
) -> list[torch.Tensor]:
|
309 |
+
return [
|
310 |
+
self.image_preprocessor(img, is_patch=is_patch)["pixel_values"]
|
311 |
+
for img in images
|
312 |
+
]
|
313 |
+
|
314 |
+
def _get_patch_repl(
|
315 |
+
self,
|
316 |
+
num_patches: int,
|
317 |
+
patch_newline_mask: list[bool] | None,
|
318 |
+
) -> tuple[str, list[int]]:
|
319 |
+
text = ""
|
320 |
+
token_ids = []
|
321 |
+
for i in range(num_patches):
|
322 |
+
assert len(patch_newline_mask) == num_patches
|
323 |
+
text += f"<patch_start>{self.patch_feature_placeholder}<patch_end>"
|
324 |
+
token_ids.extend(
|
325 |
+
[self.tokenizer.convert_tokens_to_ids("<patch_start>")] +
|
326 |
+
[self.image_token_id] * self.num_patch_feature_size +
|
327 |
+
[self.tokenizer.convert_tokens_to_ids("<patch_end>")])
|
328 |
+
if patch_newline_mask and patch_newline_mask[i]:
|
329 |
+
text += "<patch_newline>"
|
330 |
+
token_ids.append(
|
331 |
+
self.tokenizer.convert_tokens_to_ids("<patch_newline>"))
|
332 |
+
return text, token_ids
|
333 |
+
|
334 |
+
def _get_image_repl(
|
335 |
+
self,
|
336 |
+
num_images: int,
|
337 |
+
) -> tuple[str, list[int]]:
|
338 |
+
text = f"<im_start>{self.image_feature_placeholder}<im_end>"
|
339 |
+
token_ids = [
|
340 |
+
self.tokenizer.convert_tokens_to_ids("<im_start>")
|
341 |
+
] + [self.image_token_id] * self.num_image_feature_size + [
|
342 |
+
self.tokenizer.convert_tokens_to_ids("<im_end>")
|
343 |
+
]
|
344 |
+
return text * num_images, token_ids * num_images
|
345 |
+
|
346 |
+
def _get_image_repl_features(
|
347 |
+
self,
|
348 |
+
num_images: int,
|
349 |
+
num_patches: int,
|
350 |
+
patch_new_line_idx: Optional[list[bool]],
|
351 |
+
) -> tuple[str, list[int]]:
|
352 |
+
if num_patches > 0:
|
353 |
+
patch_repl, patch_repl_ids = self._get_patch_repl(
|
354 |
+
num_patches, patch_new_line_idx)
|
355 |
+
else:
|
356 |
+
patch_repl = ""
|
357 |
+
patch_repl_ids = []
|
358 |
+
image_repl, image_repl_ids = self._get_image_repl(num_images)
|
359 |
+
return patch_repl + image_repl, patch_repl_ids + image_repl_ids
|
360 |
+
|
361 |
+
def replace_placeholder(self, text: str, placeholder: str,
|
362 |
+
repls: list[str]) -> str:
|
363 |
+
parts = text.split(placeholder)
|
364 |
+
|
365 |
+
if len(parts) - 1 != len(repls):
|
366 |
+
raise ValueError(
|
367 |
+
"The number of placeholders does not match the number of replacements." # noqa: E501
|
368 |
+
)
|
369 |
+
|
370 |
+
result = [parts[0]]
|
371 |
+
for i, repl in enumerate(repls):
|
372 |
+
result.append(repl)
|
373 |
+
result.append(parts[i + 1])
|
374 |
+
|
375 |
+
return "".join(result)
|
376 |
+
|
377 |
+
def __call__(
|
378 |
+
self,
|
379 |
+
text: Optional[Union[str, list[str]]] = None,
|
380 |
+
images: Optional[Union[Image.Image, list[Image.Image]]] = None,
|
381 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
382 |
+
**kwargs,
|
383 |
+
) -> BatchFeature:
|
384 |
+
if text is None:
|
385 |
+
text = []
|
386 |
+
if not isinstance(text, list):
|
387 |
+
text = [text]
|
388 |
+
if images is None:
|
389 |
+
images = []
|
390 |
+
elif not isinstance(images, list):
|
391 |
+
images = [images]
|
392 |
+
elif isinstance(images[0], list):
|
393 |
+
images = images[0]
|
394 |
+
|
395 |
+
if len(images) == 0:
|
396 |
+
image_inputs = {}
|
397 |
+
text_inputs = self.tokenizer(text)
|
398 |
+
else:
|
399 |
+
splitted_images_data = self._split_images(images)
|
400 |
+
pixel_values_lst = []
|
401 |
+
patch_pixel_values_lst = []
|
402 |
+
patch_newline_mask_lst = []
|
403 |
+
image_repl_str_lst = []
|
404 |
+
image_repl_ids_lst = []
|
405 |
+
num_patches = []
|
406 |
+
for raw_img, img_patches, patch_newline_mask in splitted_images_data: # noqa: E501
|
407 |
+
pixel_values_lst.extend(
|
408 |
+
self._convert_images_to_pixel_values([raw_img]))
|
409 |
+
|
410 |
+
if len(img_patches) > 0:
|
411 |
+
patch_pixel_values_lst.extend(
|
412 |
+
self._convert_images_to_pixel_values(img_patches,
|
413 |
+
is_patch=True))
|
414 |
+
num_patches.append(len(img_patches))
|
415 |
+
|
416 |
+
image_repl_str, image_repl_ids = self._get_image_repl_features(
|
417 |
+
1, len(img_patches), patch_newline_mask)
|
418 |
+
image_repl_str_lst.append(image_repl_str)
|
419 |
+
image_repl_ids_lst.extend(image_repl_ids)
|
420 |
+
|
421 |
+
if patch_newline_mask is not None:
|
422 |
+
patch_newline_mask_lst.extend(patch_newline_mask)
|
423 |
+
|
424 |
+
image_inputs = {
|
425 |
+
"pixel_values": torch.cat(pixel_values_lst),
|
426 |
+
"num_patches": num_patches,
|
427 |
+
}
|
428 |
+
if patch_pixel_values_lst:
|
429 |
+
image_inputs["patch_pixel_values"] = torch.cat(
|
430 |
+
patch_pixel_values_lst)
|
431 |
+
if patch_newline_mask_lst:
|
432 |
+
image_inputs["patch_newline_mask"] = torch.tensor(
|
433 |
+
patch_newline_mask_lst, dtype=torch.bool)
|
434 |
+
|
435 |
+
text = [
|
436 |
+
self.replace_placeholder(t, self.image_token,
|
437 |
+
image_repl_str_lst) for t in text
|
438 |
+
]
|
439 |
+
text_inputs = self.tokenizer(text)
|
440 |
+
|
441 |
+
return BatchFeature(
|
442 |
+
{
|
443 |
+
**text_inputs,
|
444 |
+
**image_inputs,
|
445 |
+
},
|
446 |
+
tensor_type=return_tensors,
|
447 |
+
)
|
448 |
+
|
449 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma
|
450 |
+
def batch_decode(self, *args, **kwargs):
|
451 |
+
"""
|
452 |
+
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
453 |
+
refer to the docstring of this method for more information.
|
454 |
+
"""
|
455 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
456 |
+
|
457 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma
|
458 |
+
def decode(self, *args, **kwargs):
|
459 |
+
"""
|
460 |
+
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
461 |
+
the docstring of this method for more information.
|
462 |
+
"""
|
463 |
+
return self.tokenizer.decode(*args, **kwargs)
|
464 |
+
|
465 |
+
__all__ = ["Step3VLProcessor"]
|
processor_config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
"auto_map": {
|
3 |
-
"AutoProcessor": "
|
4 |
}
|
5 |
-
}
|
|
|
1 |
{
|
2 |
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_step3.Step3VLProcessor"
|
4 |
}
|
5 |
+
}
|