|
import numpy as np |
|
import os |
|
import argparse |
|
from tqdm import tqdm |
|
|
|
import torch.nn as nn |
|
import torch |
|
import torch.nn.functional as F |
|
import util |
|
|
|
from natsort import natsorted |
|
from glob import glob |
|
import sys |
|
sys.path.append(os.path.join(os.getcwd(), "..")) |
|
from basicsr.models.archs.histoformer_arch import Histoformer |
|
from skimage import img_as_ubyte |
|
from pdb import set_trace as stx |
|
import time |
|
parser = argparse.ArgumentParser(description='Image Deraining using Restormer') |
|
|
|
parser.add_argument('--input_dir', default='./Datasets/', type=str, help='Directory of validation images') |
|
parser.add_argument('--result_dir', default='./results/', type=str, help='Directory for results') |
|
parser.add_argument('--weights', default='./pretrained_models/deraining.pth', type=str, help='Path to weights') |
|
parser.add_argument('--yaml_file', default='Options/Allweather_Histoformer.yml', type=str, help='Path to weights') |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
yaml_file = args.yaml_file |
|
import yaml |
|
|
|
try: |
|
from yaml import CLoader as Loader |
|
except ImportError: |
|
from yaml import Loader |
|
|
|
x = yaml.load(open(yaml_file, mode='r'), Loader=Loader) |
|
|
|
s = x['network_g'].pop('type') |
|
|
|
|
|
model_restoration = Histoformer(**x['network_g']) |
|
|
|
checkpoint = torch.load(args.weights) |
|
''' |
|
from thop import profile |
|
flops, params = profile(model_restoration, inputs=(torch.randn(1, 3, 256,256), )) |
|
print('FLOPs = ' + str(flops/1000**3) + 'G') |
|
print('Params = ' + str(params/1000**2) + 'M') |
|
''' |
|
model_restoration.load_state_dict(checkpoint['params']) |
|
print("===>Testing using weights: ",args.weights) |
|
model_restoration.cuda() |
|
model_restoration = nn.DataParallel(model_restoration) |
|
model_restoration.eval() |
|
|
|
factor = 8 |
|
|
|
result_dir = os.path.join(args.result_dir) |
|
os.makedirs(result_dir, exist_ok=True) |
|
inp_dir = os.path.join(args.input_dir) |
|
files = natsorted(glob(os.path.join(inp_dir, '*.png')) + glob(os.path.join(inp_dir, '*.jpg'))) |
|
with torch.no_grad(): |
|
for file_ in tqdm(files): |
|
torch.cuda.ipc_collect() |
|
torch.cuda.empty_cache() |
|
|
|
img = np.float32(util.load_img(file_))/255. |
|
img = torch.from_numpy(img).permute(2,0,1) |
|
input_ = img.unsqueeze(0).cuda() |
|
|
|
|
|
h,w = input_.shape[2], input_.shape[3] |
|
H,W = ((h+factor)//factor)*factor, ((w+factor)//factor)*factor |
|
padh = H-h if h%factor!=0 else 0 |
|
padw = W-w if w%factor!=0 else 0 |
|
input_ = F.pad(input_, (0,padw,0,padh), 'reflect') |
|
|
|
time1 = time.time() |
|
restored = model_restoration(input_) |
|
time2 = time.time() |
|
|
|
|
|
|
|
restored = restored[:,:,:h,:w] |
|
|
|
restored = torch.clamp(restored,0,1).cpu().detach().permute(0, 2, 3, 1).squeeze(0).numpy() |
|
|
|
util.save_img((os.path.join(result_dir, os.path.splitext(os.path.split(file_)[-1])[0]+'.png')), img_as_ubyte(restored)) |
|
|