|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import unittest | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer | 
					
						
						|  |  | 
					
						
						|  | from diffusers import AmusedInpaintPipeline, AmusedScheduler, UVit2DModel, VQModel | 
					
						
						|  | from diffusers.utils import load_image | 
					
						
						|  | from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device | 
					
						
						|  |  | 
					
						
						|  | from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS | 
					
						
						|  | from ..test_pipelines_common import PipelineTesterMixin | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | enable_full_determinism() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AmusedInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | 
					
						
						|  | pipeline_class = AmusedInpaintPipeline | 
					
						
						|  | params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} | 
					
						
						|  | batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS | 
					
						
						|  | required_optional_params = PipelineTesterMixin.required_optional_params - { | 
					
						
						|  | "latents", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def get_dummy_components(self): | 
					
						
						|  | torch.manual_seed(0) | 
					
						
						|  | transformer = UVit2DModel( | 
					
						
						|  | hidden_size=8, | 
					
						
						|  | use_bias=False, | 
					
						
						|  | hidden_dropout=0.0, | 
					
						
						|  | cond_embed_dim=8, | 
					
						
						|  | micro_cond_encode_dim=2, | 
					
						
						|  | micro_cond_embed_dim=10, | 
					
						
						|  | encoder_hidden_size=8, | 
					
						
						|  | vocab_size=32, | 
					
						
						|  | codebook_size=32, | 
					
						
						|  | in_channels=8, | 
					
						
						|  | block_out_channels=8, | 
					
						
						|  | num_res_blocks=1, | 
					
						
						|  | downsample=True, | 
					
						
						|  | upsample=True, | 
					
						
						|  | block_num_heads=1, | 
					
						
						|  | num_hidden_layers=1, | 
					
						
						|  | num_attention_heads=1, | 
					
						
						|  | attention_dropout=0.0, | 
					
						
						|  | intermediate_size=8, | 
					
						
						|  | layer_norm_eps=1e-06, | 
					
						
						|  | ln_elementwise_affine=True, | 
					
						
						|  | ) | 
					
						
						|  | scheduler = AmusedScheduler(mask_token_id=31) | 
					
						
						|  | torch.manual_seed(0) | 
					
						
						|  | vqvae = VQModel( | 
					
						
						|  | act_fn="silu", | 
					
						
						|  | block_out_channels=[8], | 
					
						
						|  | down_block_types=[ | 
					
						
						|  | "DownEncoderBlock2D", | 
					
						
						|  | ], | 
					
						
						|  | in_channels=3, | 
					
						
						|  | latent_channels=8, | 
					
						
						|  | layers_per_block=1, | 
					
						
						|  | norm_num_groups=8, | 
					
						
						|  | num_vq_embeddings=32, | 
					
						
						|  | out_channels=3, | 
					
						
						|  | sample_size=8, | 
					
						
						|  | up_block_types=[ | 
					
						
						|  | "UpDecoderBlock2D", | 
					
						
						|  | ], | 
					
						
						|  | mid_block_add_attention=False, | 
					
						
						|  | lookup_from_codebook=True, | 
					
						
						|  | ) | 
					
						
						|  | torch.manual_seed(0) | 
					
						
						|  | text_encoder_config = CLIPTextConfig( | 
					
						
						|  | bos_token_id=0, | 
					
						
						|  | eos_token_id=2, | 
					
						
						|  | hidden_size=8, | 
					
						
						|  | intermediate_size=8, | 
					
						
						|  | layer_norm_eps=1e-05, | 
					
						
						|  | num_attention_heads=1, | 
					
						
						|  | num_hidden_layers=1, | 
					
						
						|  | pad_token_id=1, | 
					
						
						|  | vocab_size=1000, | 
					
						
						|  | projection_dim=8, | 
					
						
						|  | ) | 
					
						
						|  | text_encoder = CLIPTextModelWithProjection(text_encoder_config) | 
					
						
						|  | tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | 
					
						
						|  |  | 
					
						
						|  | components = { | 
					
						
						|  | "transformer": transformer, | 
					
						
						|  | "scheduler": scheduler, | 
					
						
						|  | "vqvae": vqvae, | 
					
						
						|  | "text_encoder": text_encoder, | 
					
						
						|  | "tokenizer": tokenizer, | 
					
						
						|  | } | 
					
						
						|  | return components | 
					
						
						|  |  | 
					
						
						|  | def get_dummy_inputs(self, device, seed=0): | 
					
						
						|  | if str(device).startswith("mps"): | 
					
						
						|  | generator = torch.manual_seed(seed) | 
					
						
						|  | else: | 
					
						
						|  | generator = torch.Generator(device=device).manual_seed(seed) | 
					
						
						|  | image = torch.full((1, 3, 4, 4), 1.0, dtype=torch.float32, device=device) | 
					
						
						|  | mask_image = torch.full((1, 1, 4, 4), 1.0, dtype=torch.float32, device=device) | 
					
						
						|  | mask_image[0, 0, 0, 0] = 0 | 
					
						
						|  | mask_image[0, 0, 0, 1] = 0 | 
					
						
						|  | inputs = { | 
					
						
						|  | "prompt": "A painting of a squirrel eating a burger", | 
					
						
						|  | "generator": generator, | 
					
						
						|  | "num_inference_steps": 2, | 
					
						
						|  | "output_type": "np", | 
					
						
						|  | "image": image, | 
					
						
						|  | "mask_image": mask_image, | 
					
						
						|  | } | 
					
						
						|  | return inputs | 
					
						
						|  |  | 
					
						
						|  | def test_inference_batch_consistent(self, batch_sizes=[2]): | 
					
						
						|  | self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False) | 
					
						
						|  |  | 
					
						
						|  | @unittest.skip("aMUSEd does not support lists of generators") | 
					
						
						|  | def test_inference_batch_single_identical(self): | 
					
						
						|  | ... | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @slow | 
					
						
						|  | @require_torch_gpu | 
					
						
						|  | class AmusedInpaintPipelineSlowTests(unittest.TestCase): | 
					
						
						|  | def test_amused_256(self): | 
					
						
						|  | pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-256") | 
					
						
						|  | pipe.to(torch_device) | 
					
						
						|  |  | 
					
						
						|  | image = ( | 
					
						
						|  | load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg") | 
					
						
						|  | .resize((256, 256)) | 
					
						
						|  | .convert("RGB") | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | mask_image = ( | 
					
						
						|  | load_image( | 
					
						
						|  | "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png" | 
					
						
						|  | ) | 
					
						
						|  | .resize((256, 256)) | 
					
						
						|  | .convert("L") | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image = pipe( | 
					
						
						|  | "winter mountains", | 
					
						
						|  | image, | 
					
						
						|  | mask_image, | 
					
						
						|  | generator=torch.Generator().manual_seed(0), | 
					
						
						|  | num_inference_steps=2, | 
					
						
						|  | output_type="np", | 
					
						
						|  | ).images | 
					
						
						|  |  | 
					
						
						|  | image_slice = image[0, -3:, -3:, -1].flatten() | 
					
						
						|  |  | 
					
						
						|  | assert image.shape == (1, 256, 256, 3) | 
					
						
						|  | expected_slice = np.array([0.0699, 0.0716, 0.0608, 0.0715, 0.0797, 0.0638, 0.0802, 0.0924, 0.0634]) | 
					
						
						|  | assert np.abs(image_slice - expected_slice).max() < 0.1 | 
					
						
						|  |  | 
					
						
						|  | def test_amused_256_fp16(self): | 
					
						
						|  | pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-256", variant="fp16", torch_dtype=torch.float16) | 
					
						
						|  | pipe.to(torch_device) | 
					
						
						|  |  | 
					
						
						|  | image = ( | 
					
						
						|  | load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg") | 
					
						
						|  | .resize((256, 256)) | 
					
						
						|  | .convert("RGB") | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | mask_image = ( | 
					
						
						|  | load_image( | 
					
						
						|  | "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png" | 
					
						
						|  | ) | 
					
						
						|  | .resize((256, 256)) | 
					
						
						|  | .convert("L") | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image = pipe( | 
					
						
						|  | "winter mountains", | 
					
						
						|  | image, | 
					
						
						|  | mask_image, | 
					
						
						|  | generator=torch.Generator().manual_seed(0), | 
					
						
						|  | num_inference_steps=2, | 
					
						
						|  | output_type="np", | 
					
						
						|  | ).images | 
					
						
						|  |  | 
					
						
						|  | image_slice = image[0, -3:, -3:, -1].flatten() | 
					
						
						|  |  | 
					
						
						|  | assert image.shape == (1, 256, 256, 3) | 
					
						
						|  | expected_slice = np.array([0.0735, 0.0749, 0.0650, 0.0739, 0.0805, 0.0667, 0.0802, 0.0923, 0.0622]) | 
					
						
						|  | assert np.abs(image_slice - expected_slice).max() < 0.1 | 
					
						
						|  |  | 
					
						
						|  | def test_amused_512(self): | 
					
						
						|  | pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-512") | 
					
						
						|  | pipe.to(torch_device) | 
					
						
						|  |  | 
					
						
						|  | image = ( | 
					
						
						|  | load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg") | 
					
						
						|  | .resize((512, 512)) | 
					
						
						|  | .convert("RGB") | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | mask_image = ( | 
					
						
						|  | load_image( | 
					
						
						|  | "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png" | 
					
						
						|  | ) | 
					
						
						|  | .resize((512, 512)) | 
					
						
						|  | .convert("L") | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image = pipe( | 
					
						
						|  | "winter mountains", | 
					
						
						|  | image, | 
					
						
						|  | mask_image, | 
					
						
						|  | generator=torch.Generator().manual_seed(0), | 
					
						
						|  | num_inference_steps=2, | 
					
						
						|  | output_type="np", | 
					
						
						|  | ).images | 
					
						
						|  |  | 
					
						
						|  | image_slice = image[0, -3:, -3:, -1].flatten() | 
					
						
						|  |  | 
					
						
						|  | assert image.shape == (1, 512, 512, 3) | 
					
						
						|  | expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0005, 0.0]) | 
					
						
						|  | assert np.abs(image_slice - expected_slice).max() < 0.05 | 
					
						
						|  |  | 
					
						
						|  | def test_amused_512_fp16(self): | 
					
						
						|  | pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16) | 
					
						
						|  | pipe.to(torch_device) | 
					
						
						|  |  | 
					
						
						|  | image = ( | 
					
						
						|  | load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg") | 
					
						
						|  | .resize((512, 512)) | 
					
						
						|  | .convert("RGB") | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | mask_image = ( | 
					
						
						|  | load_image( | 
					
						
						|  | "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png" | 
					
						
						|  | ) | 
					
						
						|  | .resize((512, 512)) | 
					
						
						|  | .convert("L") | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image = pipe( | 
					
						
						|  | "winter mountains", | 
					
						
						|  | image, | 
					
						
						|  | mask_image, | 
					
						
						|  | generator=torch.Generator().manual_seed(0), | 
					
						
						|  | num_inference_steps=2, | 
					
						
						|  | output_type="np", | 
					
						
						|  | ).images | 
					
						
						|  |  | 
					
						
						|  | image_slice = image[0, -3:, -3:, -1].flatten() | 
					
						
						|  |  | 
					
						
						|  | assert image.shape == (1, 512, 512, 3) | 
					
						
						|  | expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0025, 0.0]) | 
					
						
						|  | assert np.abs(image_slice - expected_slice).max() < 3e-3 | 
					
						
						|  |  |