diffusers-sdxl-controlnet
/
tests
/pipelines
/stable_diffusion_3
/test_pipeline_stable_diffusion_3.py
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel | |
| from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, StableDiffusion3Pipeline | |
| from diffusers.utils.testing_utils import ( | |
| numpy_cosine_similarity_distance, | |
| require_torch_gpu, | |
| slow, | |
| torch_device, | |
| ) | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| class StableDiffusion3PipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
| pipeline_class = StableDiffusion3Pipeline | |
| params = frozenset( | |
| [ | |
| "prompt", | |
| "height", | |
| "width", | |
| "guidance_scale", | |
| "negative_prompt", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| ] | |
| ) | |
| batch_params = frozenset(["prompt", "negative_prompt"]) | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| transformer = SD3Transformer2DModel( | |
| sample_size=32, | |
| patch_size=1, | |
| in_channels=4, | |
| num_layers=1, | |
| attention_head_dim=8, | |
| num_attention_heads=4, | |
| caption_projection_dim=32, | |
| joint_attention_dim=32, | |
| pooled_projection_dim=64, | |
| out_channels=4, | |
| ) | |
| clip_text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) | |
| torch.manual_seed(0) | |
| text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) | |
| text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| sample_size=32, | |
| in_channels=3, | |
| out_channels=3, | |
| block_out_channels=(4,), | |
| layers_per_block=1, | |
| latent_channels=4, | |
| norm_num_groups=1, | |
| use_quant_conv=False, | |
| use_post_quant_conv=False, | |
| shift_factor=0.0609, | |
| scaling_factor=1.5035, | |
| ) | |
| scheduler = FlowMatchEulerDiscreteScheduler() | |
| return { | |
| "scheduler": scheduler, | |
| "text_encoder": text_encoder, | |
| "text_encoder_2": text_encoder_2, | |
| "text_encoder_3": text_encoder_3, | |
| "tokenizer": tokenizer, | |
| "tokenizer_2": tokenizer_2, | |
| "tokenizer_3": tokenizer_3, | |
| "transformer": transformer, | |
| "vae": vae, | |
| } | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 5.0, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| def test_stable_diffusion_3_different_prompts(self): | |
| pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_same_prompt = pipe(**inputs).images[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["prompt_2"] = "a different prompt" | |
| inputs["prompt_3"] = "another different prompt" | |
| output_different_prompts = pipe(**inputs).images[0] | |
| max_diff = np.abs(output_same_prompt - output_different_prompts).max() | |
| # Outputs should be different here | |
| assert max_diff > 1e-2 | |
| def test_stable_diffusion_3_different_negative_prompts(self): | |
| pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_same_prompt = pipe(**inputs).images[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["negative_prompt_2"] = "deformed" | |
| inputs["negative_prompt_3"] = "blurry" | |
| output_different_prompts = pipe(**inputs).images[0] | |
| max_diff = np.abs(output_same_prompt - output_different_prompts).max() | |
| # Outputs should be different here | |
| assert max_diff > 1e-2 | |
| def test_stable_diffusion_3_prompt_embeds(self): | |
| pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_with_prompt = pipe(**inputs).images[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| prompt = inputs.pop("prompt") | |
| do_classifier_free_guidance = inputs["guidance_scale"] > 1 | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = pipe.encode_prompt( | |
| prompt, | |
| prompt_2=None, | |
| prompt_3=None, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| device=torch_device, | |
| ) | |
| output_with_embeds = pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| **inputs, | |
| ).images[0] | |
| max_diff = np.abs(output_with_prompt - output_with_embeds).max() | |
| assert max_diff < 1e-4 | |
| def test_fused_qkv_projections(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe(**inputs).images | |
| original_image_slice = image[0, -3:, -3:, -1] | |
| pipe.transformer.fuse_qkv_projections() | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe(**inputs).images | |
| image_slice_fused = image[0, -3:, -3:, -1] | |
| pipe.transformer.unfuse_qkv_projections() | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe(**inputs).images | |
| image_slice_disabled = image[0, -3:, -3:, -1] | |
| assert np.allclose( | |
| original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 | |
| ), "Fusion of QKV projections shouldn't affect the outputs." | |
| assert np.allclose( | |
| image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 | |
| ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." | |
| assert np.allclose( | |
| original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 | |
| ), "Original outputs should match when fused QKV projections are disabled." | |
| class StableDiffusion3PipelineSlowTests(unittest.TestCase): | |
| pipeline_class = StableDiffusion3Pipeline | |
| repo_id = "stabilityai/stable-diffusion-3-medium-diffusers" | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def get_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| return { | |
| "prompt": "A photo of a cat", | |
| "num_inference_steps": 2, | |
| "guidance_scale": 5.0, | |
| "output_type": "np", | |
| "generator": generator, | |
| } | |
| def test_sd3_inference(self): | |
| pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.float16) | |
| pipe.enable_model_cpu_offload() | |
| inputs = self.get_inputs(torch_device) | |
| image = pipe(**inputs).images[0] | |
| image_slice = image[0, :10, :10] | |
| expected_slice = np.array( | |
| [ | |
| [0.36132812, 0.30004883, 0.25830078], | |
| [0.36669922, 0.31103516, 0.23754883], | |
| [0.34814453, 0.29248047, 0.23583984], | |
| [0.35791016, 0.30981445, 0.23999023], | |
| [0.36328125, 0.31274414, 0.2607422], | |
| [0.37304688, 0.32177734, 0.26171875], | |
| [0.3671875, 0.31933594, 0.25756836], | |
| [0.36035156, 0.31103516, 0.2578125], | |
| [0.3857422, 0.33789062, 0.27563477], | |
| [0.3701172, 0.31982422, 0.265625], | |
| ], | |
| dtype=np.float32, | |
| ) | |
| max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) | |
| assert max_diff < 1e-4 | |