File size: 10,779 Bytes
13d3ba0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
#include "ggml/ggml.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <inttypes.h>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#define MAX_NARGS 2
float frand(void) {
return (float)rand()/(float)RAND_MAX;
}
int irand(int n) {
return rand()%n;
}
void get_random_dims(int64_t * dims, int ndims) {
dims[0] = dims[1] = dims[2] = dims[3] = 1;
for (int i = 0; i < ndims; i++) {
dims[i] = 1 + irand(4);
}
}
struct ggml_tensor * get_random_tensor(
struct ggml_context * ctx0,
int ndims,
int64_t ne[],
float fmin,
float fmax) {
struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
switch (ndims) {
case 1:
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
}
break;
case 2:
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
}
}
break;
case 3:
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
}
}
}
break;
case 4:
for (int i3 = 0; i3 < ne[3]; i3++) {
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
}
}
}
}
break;
default:
assert(false);
};
return result;
}
float get_element(const struct ggml_tensor * t, int idx) {
return ((float *)t->data)[idx];
}
void set_element(struct ggml_tensor * t, int idx, float value) {
((float *)t->data)[idx] = value;
}
bool check_gradient(
const char * op_name,
struct ggml_context * ctx0,
struct ggml_tensor * x[],
struct ggml_tensor * f,
int ndims,
int nargs,
float eps,
float max_error_abs,
float max_error_rel) {
const int n_threads = 1;
struct ggml_cgraph gf = ggml_build_forward (f);
struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
ggml_graph_reset (&gf);
ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute_with_ctx(ctx0, &gb, n_threads);
ggml_graph_dump_dot(&gf, NULL, "test-grad0-forward.dot");
ggml_graph_dump_dot(&gb, &gf, "test-grad0-backward.dot");
for (int i = 0; i < nargs; ++i) {
const int64_t nelements = ggml_nelements(x[i]);
for (int64_t k = 0; k < nelements; ++k) {
// compute gradient using finite differences
const float x0 = get_element(x[i], k);
set_element(x[i], k, x0 + eps);
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
const float f0 = ggml_get_f32_1d(f, 0);
set_element(x[i], k, x0 - eps);
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
const float f1 = ggml_get_f32_1d(f, 0);
const float g0 = (f0 - f1)/(2.0f*eps);
set_element(x[i], k, x0);
// compute gradient using backward graph
ggml_graph_reset (&gf);
ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute_with_ctx(ctx0, &gb, n_threads);
const float g1 = get_element(x[i]->grad, k);
const float error_abs = fabsf(g0 - g1);
const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabs(g0) : 0;
if (error_abs > max_error_abs || error_rel > max_error_rel) {
printf("%s: ndims=%d, i=%d, k=%" PRId64 ", g0=%f, g1=%f, error_abs=%f, error_rel=%f\n", op_name, ndims, i, k, g0, g1, error_abs, error_rel);
assert(false);
}
}
}
return true;
}
float mat_get(const struct ggml_tensor * t, int i0, int i1, int i2, int i3) {
const size_t nb0 = t->nb[0];
const size_t nb1 = t->nb[1];
const size_t nb2 = t->nb[2];
const size_t nb3 = t->nb[3];
return
*((float*) ((char*)t->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3));
}
bool check_mat_mul(
const struct ggml_tensor * y,
const struct ggml_tensor * x0,
const struct ggml_tensor * x1) {
const int64_t n00 = x0->ne[0];
const int64_t n10 = x0->ne[1];
const int64_t n20 = x0->ne[2];
const int64_t n30 = x0->ne[3];
const int64_t n01 = x1->ne[0];
const int64_t n11 = x1->ne[1];
const int64_t n21 = x1->ne[2];
const int64_t n31 = x1->ne[3];
const int64_t n02 = y->ne[0];
const int64_t n12 = y->ne[1];
const int64_t n22 = y->ne[2];
const int64_t n32 = y->ne[3];
printf("x0: [%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "]\n", n00, n10, n20, n30);
for (int j = 0; j < n10; ++j) {
for (int i = 0; i < n00; ++i) {
printf("%6.3f ", mat_get(x0, i, j, 0, 0));
}
printf("\n");
}
printf("\n");
printf("x1: [%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "]\n", n01, n11, n21, n31);
for (int j = 0; j < n11; ++j) {
for (int i = 0; i < n01; ++i) {
printf("%6.3f ", mat_get(x1, i, j, 0, 0));
}
printf("\n");
}
printf("\n");
printf("y: [%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "]\n", n02, n12, n22, n32);
for (int j = 0; j < n12; ++j) {
for (int i = 0; i < n02; ++i) {
printf("%6.3f ", mat_get(y, i, j, 0, 0));
}
printf("\n");
}
for (int i3 = 0; i3 < n32; ++i3) {
for (int i2 = 0; i2 < n22; ++i2) {
for (int i1 = 0; i1 < n12; ++i1) {
for (int i0 = 0; i0 < n02; ++i0) {
float sum = 0.0f;
for (int k = 0; k < n00; ++k) {
sum += mat_get(x0, k, i0, i2, i3) * mat_get(x1, k, i1, i2, i3);
}
if (fabsf(sum - mat_get(y, i0, i1, i2, i3)) > 1e-5) {
printf("error: i0=%d, i1=%d, i2=%d, i3=%d, sum=%f, y=%f\n",
i0, i1, i2, i3, sum, mat_get(y, i0, i1, i2, i3));
assert(false);
return false;
}
}
}
}
}
return true;
}
int main(int argc, const char ** argv) {
struct ggml_init_params params = {
.mem_size = 128*1024*1024,
.mem_buffer = NULL,
.no_alloc = false,
};
int64_t ne[4];
// original loop: 500
int niter = 500;
const char *env = getenv("GGML_NLOOP");
if (env != NULL) {
niter = atoi(env);
}
if (argc > 1) {
niter = atoi(argv[1]);
}
int n_threads = 1;
for (int iter = 0; iter < niter; ++iter) {
printf("test-mul-mat0: iter:%d/%d\n", iter, niter);
struct ggml_context * ctx0 = ggml_init(params);
get_random_dims(ne, 4);
struct ggml_tensor * x[MAX_NARGS];
// mul_mat
{
const int nargs = 1;
for (int ndims = 2; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
ne[1] = rand()%4 + 1;
x[1] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, m);
printf("testing: mul_mat, [%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "] = [%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "] * [%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "]\n",
m->ne[0], m->ne[1], m->ne[2], m->ne[3],
x[1]->ne[0], x[1]->ne[1], x[1]->ne[2], x[1]->ne[3],
x[0]->ne[0], x[0]->ne[1], x[0]->ne[2], x[0]->ne[3]);
assert(m->ne[0] == x[1]->ne[1]);
assert(m->ne[1] == x[0]->ne[1]);
assert(m->ne[2] == x[0]->ne[2]);
assert(m->ne[3] == x[0]->ne[3]);
if (ndims <= 2) {
check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
} else {
struct ggml_cgraph gf = ggml_build_forward(m);
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
}
check_mat_mul(m, x[1], x[0]);
}
}
// mul_mat (transposed)
{
const int nargs = 1;
for (int ndims = 2; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
ne[1] = ne[0];
ne[0] = rand()%4 + 1;
x[1] = ggml_cont(ctx0, ggml_transpose(ctx0, get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f)));
ggml_set_param(ctx0, x[0]);
struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, m);
printf("testing: mul_mat, [%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "] = [%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "] * [%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "]\n",
m->ne[0], m->ne[1], m->ne[2], m->ne[3],
x[1]->ne[0], x[1]->ne[1], x[1]->ne[2], x[1]->ne[3],
x[0]->ne[0], x[0]->ne[1], x[0]->ne[2], x[0]->ne[3]);
assert(m->ne[0] == x[1]->ne[1]);
assert(m->ne[1] == x[0]->ne[1]);
assert(m->ne[2] == x[0]->ne[2]);
assert(m->ne[3] == x[0]->ne[3]);
if (ndims <= 2) {
check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
} else {
struct ggml_cgraph gf = ggml_build_forward(m);
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
}
check_mat_mul(m, x[1], x[0]);
}
}
ggml_free(ctx0);
}
return 0;
}
|