File size: 41,999 Bytes
13d3ba0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
#include "ggml/ggml.h"
#include "ggml/ggml-alloc.h"
#include "ggml/ggml-backend.h"

#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#endif

#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif

#include "common.h"
#include "common-ggml.h"

#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <set>
#include <string>
#include <vector>

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
    (void) level;
    (void) user_data;
    fputs(text, stderr);
    fflush(stderr);
}

typedef int32_t gpt2_pos;
typedef int32_t gpt2_seq_id;

// default hparams (GPT-2 117M)
struct gpt2_hparams {
    int32_t n_vocab = 50257;
    int32_t n_ctx   = 1024;
    int32_t n_embd  = 768;
    int32_t n_head  = 12;
    int32_t n_layer = 12;
    int32_t ftype   = 1;
    float   eps     = 1e-5f;
};

struct gpt2_layer {
    // normalization
    struct ggml_tensor * ln_1_g;
    struct ggml_tensor * ln_1_b;

    struct ggml_tensor * ln_2_g;
    struct ggml_tensor * ln_2_b;

    // attention
    struct ggml_tensor * c_attn_attn_w;
    struct ggml_tensor * c_attn_attn_b;

    struct ggml_tensor * c_attn_proj_w;
    struct ggml_tensor * c_attn_proj_b;

    // mlp
    struct ggml_tensor * c_mlp_fc_w;
    struct ggml_tensor * c_mlp_fc_b;

    struct ggml_tensor * c_mlp_proj_w;
    struct ggml_tensor * c_mlp_proj_b;
};

struct gpt2_kv_cell {
    gpt2_pos pos   = -1;
    gpt2_pos delta = 0;

    std::set<gpt2_seq_id> seq_id;

    bool has_seq_id(const gpt2_seq_id & id) const {
        return seq_id.find(id) != seq_id.end();
    }
};

struct gpt2_kv_cache {
    // key + value memory
    struct ggml_tensor * k;
    struct ggml_tensor * v;
    //

    uint32_t head = 0;
    uint32_t size = 0;

    // computed before each graph build
    uint32_t n = 0;

    std::vector<gpt2_kv_cell> cells;

    ggml_backend_buffer_t buffer;
};

struct gpt2_model {
    gpt2_hparams hparams;

    // normalization
    struct ggml_tensor * ln_f_g;
    struct ggml_tensor * ln_f_b;

    struct ggml_tensor * wte;     // position embedding
    struct ggml_tensor * wpe;     //    token embedding
    struct ggml_tensor * lm_head; // language model head

    std::vector<gpt2_layer> layers;

    gpt2_kv_cache kv_cache;

    struct ggml_context * ctx;

    ggml_backend_t backend = NULL;

    ggml_backend_buffer_t buffer_w;

    std::map<std::string, struct ggml_tensor *> tensors;
};

// Input data for gpt2_decode
// A gpt2_batch object can contain input about one or many sequences
// The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
//
// - token  : the token ids of the input (used when embd is NULL)
// - embd   : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
// - pos    : the positions of the respective token in the sequence
// - seq_id : the sequence to which the respective token belongs
// - logits : if zero, the logits for the respective token will not be output
//
struct gpt2_batch {
    int32_t n_tokens = -1;

    gpt_vocab::id  * token  = {};
    float          * embd   = {};
    gpt2_pos       * pos    = {};
    gpt2_seq_id    * seq_id = {};
    int8_t         * logits = {};
};

// load the model's weights from a file
bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab, int n_ctx, int n_gpu_layers) {
    printf("%s: loading model from '%s'\n", __func__, fname.c_str());

    auto fin = std::ifstream(fname, std::ios::binary);
    if (!fin) {
        fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
        return false;
    }

    // verify magic
    {
        uint32_t magic;
        fin.read((char *) &magic, sizeof(magic));
        if (magic != GGML_FILE_MAGIC) {
            fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
            return false;
        }
    }

    // load hparams
    {
        auto & hparams = model.hparams;

        fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
        fin.read((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));
        fin.read((char *) &hparams.n_embd,  sizeof(hparams.n_embd));
        fin.read((char *) &hparams.n_head,  sizeof(hparams.n_head));
        fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
        fin.read((char *) &hparams.ftype,   sizeof(hparams.ftype));

        const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;

        printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
        printf("%s: n_ctx   = %d\n", __func__, hparams.n_ctx);
        printf("%s: n_embd  = %d\n", __func__, hparams.n_embd);
        printf("%s: n_head  = %d\n", __func__, hparams.n_head);
        printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
        printf("%s: ftype   = %d\n", __func__, hparams.ftype);
        printf("%s: qntvr   = %d\n", __func__, qntvr);

        hparams.ftype %= GGML_QNT_VERSION_FACTOR;
    }

    // load vocab
    {
        int32_t n_vocab = 0;
        fin.read((char *) &n_vocab, sizeof(n_vocab));

        if (n_vocab != model.hparams.n_vocab) {
            fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
                    __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
            return false;
        }

        std::string word;
        std::vector<char> buf(128);

        for (int i = 0; i < n_vocab; i++) {
            uint32_t len;
            fin.read((char *) &len, sizeof(len));

            buf.resize(len);
            fin.read((char *) buf.data(), len);
            word.assign(buf.data(), len);

            vocab.token_to_id[word] = i;
            vocab.id_to_token[i] = word;
        }
    }

    // for the big tensors, we have the option to store the data in 16-bit floats or quantized
    // in order to save memory and also to speed up the computation
    ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
    if (wtype == GGML_TYPE_COUNT) {
        fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
                __func__, fname.c_str(), model.hparams.ftype);
        return false;
    }

    auto & ctx = model.ctx;

    size_t buffer_size = 0;

    {
        const auto & hparams = model.hparams;

        const int n_embd  = hparams.n_embd;
        const int n_layer = hparams.n_layer;
        const int n_ctx   = hparams.n_ctx;
        const int n_vocab = hparams.n_vocab;

        buffer_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
        buffer_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b

        buffer_size += n_vocab*n_embd*ggml_type_sizef(wtype);         // wte
        buffer_size +=   n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe
        buffer_size += n_vocab*n_embd*ggml_type_sizef(wtype);         // lm_head

        buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
        buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b

        buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
        buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b

        buffer_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype));         // c_attn_attn_w
        buffer_size += n_layer*(       3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b

        buffer_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype));           // c_attn_proj_w
        buffer_size += n_layer*(       n_embd*ggml_type_sizef(GGML_TYPE_F32));   // c_attn_proj_b

        buffer_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype));         // c_mlp_fc_w
        buffer_size += n_layer*(       4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b

        buffer_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype));         // c_mlp_proj_w
        buffer_size += n_layer*(         n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b

        buffer_size += (6 + 12*n_layer)*128; // alignment overhead

        printf("%s: ggml tensor size    = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
        printf("%s: backend buffer size = %6.2f MB\n", __func__, buffer_size/(1024.0*1024.0));
    }

    // create the ggml context
    {
        size_t n_tensors = 2 + 6 + 12*model.hparams.n_layer;
        struct ggml_init_params params = {
            /*.mem_size   =*/ ggml_tensor_overhead() * n_tensors,
            /*.mem_buffer =*/ NULL,
            /*.no_alloc   =*/ true,
        };

        model.ctx = ggml_init(params);
        if (!model.ctx) {
            fprintf(stderr, "%s: ggml_init() failed\n", __func__);
            return false;
        }
    }

    // initialize the backend
#ifdef GGML_USE_CUBLAS
    if (n_gpu_layers > 0) {
        fprintf(stderr, "%s: using CUDA backend\n", __func__);
        model.backend = ggml_backend_cuda_init();
        if (!model.backend) {
            fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
        }
    }
#endif

#ifdef GGML_USE_METAL
    if (n_gpu_layers > 0) {
        fprintf(stderr, "%s: using Metal backend\n", __func__);
        ggml_metal_log_set_callback(ggml_log_callback_default, nullptr);
        model.backend = ggml_backend_metal_init();
        if (!model.backend) {
            fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
        }
    }
#endif

    if (!model.backend) {
        // fallback to CPU backend
        fprintf(stderr, "%s: using CPU backend\n", __func__);
        model.backend = ggml_backend_cpu_init();
    }

    if (!model.backend) {
        fprintf(stderr, "%s: ggml_backend_cpu_init() failed\n", __func__);
        return false;
    }

    // allocate weights buffer
    model.buffer_w = ggml_backend_alloc_buffer(model.backend, buffer_size);

    // prepare memory for the weights
    {
        const auto & hparams = model.hparams;

        const int n_embd  = hparams.n_embd;
        const int n_layer = hparams.n_layer;
        const int n_ctx   = hparams.n_ctx;
        const int n_vocab = hparams.n_vocab;

        model.layers.resize(n_layer);

        model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
        model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);

        model.wte     = ggml_new_tensor_2d(ctx, wtype,         n_embd, n_vocab);
        model.wpe     = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
        model.lm_head = ggml_new_tensor_2d(ctx, wtype,         n_embd, n_vocab);

        // map by name
        model.tensors["model/ln_f/g"] = model.ln_f_g;
        model.tensors["model/ln_f/b"] = model.ln_f_b;

        model.tensors["model/wte"]     = model.wte;
        model.tensors["model/wpe"]     = model.wpe;
        model.tensors["model/lm_head"] = model.lm_head;

        for (int i = 0; i < n_layer; ++i) {
            auto & layer = model.layers[i];

            layer.ln_1_g        = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);
            layer.ln_1_b        = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);

            layer.ln_2_g        = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);
            layer.ln_2_b        = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);

            layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype,           n_embd, 3*n_embd);
            layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);

            layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype,           n_embd, n_embd);
            layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);

            layer.c_mlp_fc_w    = ggml_new_tensor_2d(ctx, wtype,           n_embd, 4*n_embd);
            layer.c_mlp_fc_b    = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);

            layer.c_mlp_proj_w  = ggml_new_tensor_2d(ctx, wtype,         4*n_embd, n_embd);
            layer.c_mlp_proj_b  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_embd);

            // map by name
            model.tensors["model/h" + std::to_string(i) + "/ln_1/g"]        = layer.ln_1_g;
            model.tensors["model/h" + std::to_string(i) + "/ln_1/b"]        = layer.ln_1_b;

            model.tensors["model/h" + std::to_string(i) + "/ln_2/g"]        = layer.ln_2_g;
            model.tensors["model/h" + std::to_string(i) + "/ln_2/b"]        = layer.ln_2_b;

            model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
            model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;

            model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;
            model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;

            model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"]    = layer.c_mlp_fc_w;
            model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"]    = layer.c_mlp_fc_b;

            model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"]  = layer.c_mlp_proj_w;
            model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"]  = layer.c_mlp_proj_b;
        }
    }

    // override the default training context with the user-provided
    model.hparams.n_ctx = n_ctx;

    // key + value memory
    {
        const auto & hparams = model.hparams;

        const int n_embd  = hparams.n_embd;
        const int n_layer = hparams.n_layer;
        const int n_ctx   = hparams.n_ctx;

        const int n_mem      = n_layer*n_ctx;
        const int n_elements = n_embd*n_mem;

        model.kv_cache.k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
        model.kv_cache.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);

        model.kv_cache.head      = 0;
        model.kv_cache.size      = n_ctx;

        model.kv_cache.cells.resize(n_ctx);

        const size_t memory_size = ggml_nbytes(model.kv_cache.k) + ggml_nbytes(model.kv_cache.v);

        printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);

        // create a backend buffer (can be in host or device memory)
        model.kv_cache.buffer = ggml_backend_alloc_buffer(model.backend, memory_size + 256);

        // allocate the tensors into the backend buffer
        {
            ggml_allocr * alloc = ggml_allocr_new_from_buffer(model.kv_cache.buffer);

            // this updates the pointers in the tensors to point to the correct location in the buffer
            // this is necessary since the ggml_context is .no_alloc == true
            // note that the buffer can actually be a device buffer, depending on the backend
            ggml_allocr_alloc(alloc, model.kv_cache.k);
            ggml_allocr_alloc(alloc, model.kv_cache.v);

            ggml_allocr_free(alloc);
        }
    }

    // load weights
    {
        ggml_allocr * alloc = ggml_allocr_new_from_buffer(model.buffer_w);

        size_t total_size = 0;

        bool has_lm_head = false;

        std::vector<char> read_buf;

        while (true) {
            int32_t n_dims;
            int32_t length;
            int32_t ttype;

            fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
            fin.read(reinterpret_cast<char *>(&length), sizeof(length));
            fin.read(reinterpret_cast<char *>(&ttype),  sizeof(ttype));

            if (fin.eof()) {
                break;
            }

            int32_t nelements = 1;
            int32_t ne[2] = { 1, 1 };
            for (int i = 0; i < n_dims; ++i) {
                fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
                nelements *= ne[i];
            }

            std::string name(length, 0);
            fin.read(&name[0], length);

            if (model.tensors.find(name) == model.tensors.end()) {
                fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
                return false;
            }

            auto tensor = model.tensors[name];
            ggml_set_name(tensor, name.c_str());
            if (ggml_nelements(tensor) != nelements) {
                fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
                return false;
            }

            if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
                fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
                        __func__, name.c_str(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
                return false;
            }

            // for debugging
            if (0) {
                printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
            }

            const size_t bpe = ggml_type_size(ggml_type(ttype));

            if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
                fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
                        __func__, name.c_str(), ggml_nbytes(tensor), nelements*bpe);
                return false;
            }

            ggml_allocr_alloc(alloc, tensor);

            if (ggml_backend_is_cpu  (model.backend)
#ifdef GGML_USE_METAL
                || ggml_backend_is_metal(model.backend)
#endif
                ) {
                // for the CPU and Metal backend, we can read directly into the tensor
                fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
            } else {
                // read into a temporary buffer first, then copy to device memory
                read_buf.resize(ggml_nbytes(tensor));
                fin.read(read_buf.data(), ggml_nbytes(tensor));
                ggml_backend_tensor_set(tensor, read_buf.data(), 0, ggml_nbytes(tensor));
            }

            // GPT-2 models share the WTE tensor as the LM head
            if (name == "model/wte" && has_lm_head == false) {
                //ggml_allocr_alloc(alloc, model.lm_head);
                //ggml_backend_tensor_copy(tensor, model.lm_head);
                model.lm_head = tensor;
            }

            if (name == "model/lm_head") {
                has_lm_head = true;
            }

            total_size += ggml_nbytes(tensor);
        }

        ggml_allocr_free(alloc);
        printf("%s: model size  = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
    }

    fin.close();

    return true;
}

// build the computation graph
struct ggml_cgraph * gpt2_graph(
        const  gpt2_model  & model,
        struct ggml_allocr * allocr,
        const  gpt2_batch  & batch) {
    const auto & hparams = model.hparams;

    const int n_embd  = hparams.n_embd;
    const int n_layer = hparams.n_layer;
    const int n_ctx   = hparams.n_ctx;
    const int n_head  = hparams.n_head;

    const auto & kv_cache = model.kv_cache;

    const int32_t n_tokens = batch.n_tokens;
    const int32_t n_kv     = ggml_allocr_is_measure(allocr) ? n_ctx            : kv_cache.n;
    const int32_t kv_head  = ggml_allocr_is_measure(allocr) ? n_ctx - n_tokens : kv_cache.head;

    // since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data
    static size_t buf_size = ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead();
    static std::vector<uint8_t> buf(buf_size);

    struct ggml_init_params params = {
        /*.mem_size   =*/ buf_size,
        /*.mem_buffer =*/ buf.data(),
        /*.no_alloc   =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
    };

    struct ggml_context * ctx0 = ggml_init(params);

    struct ggml_cgraph  * gf = ggml_new_graph(ctx0);

    struct ggml_tensor * inpL;
    if (batch.token) {
        struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
        ggml_allocr_alloc(allocr, inp_tokens);
        if (!ggml_allocr_is_measure(allocr)) {
            ggml_backend_tensor_set(inp_tokens, batch.token, 0, n_tokens*ggml_element_size(inp_tokens));
        }

        struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
        ggml_allocr_alloc(allocr, position);
        if (!ggml_allocr_is_measure(allocr)) {
            for (int i = 0; i < n_tokens; ++i) {
                int32_t v = batch.pos[i];
                ggml_backend_tensor_set(position, &v, i*sizeof(int32_t), sizeof(v));
            }
        }

        // wte + wpe
        inpL =
            ggml_add(ctx0,
                    ggml_get_rows(ctx0, model.wte, inp_tokens),
                    ggml_get_rows(ctx0, model.wpe, position));
    } else {
        GGML_ASSERT(batch.embd);

        inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);

        ggml_allocr_alloc(allocr, inpL);
        if (!ggml_allocr_is_measure(allocr)) {
            ggml_backend_tensor_set(inpL, batch.embd, 0, n_tokens * n_embd * ggml_element_size(inpL));
        }
    }

    struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
    ggml_allocr_alloc(allocr, KQ_scale);
    if (!ggml_allocr_is_measure(allocr)) {
        float s = 1.0f/sqrtf(float(n_embd)/n_head);
        ggml_backend_tensor_set(KQ_scale, &s, 0, sizeof(s));
    }

    // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
    struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
    ggml_set_name(KQ_mask, "KQ_mask");
    ggml_allocr_alloc(allocr, KQ_mask);
    if (!ggml_allocr_is_measure(allocr)) {
        std::vector<float> data_buf(n_kv*n_tokens);
        const float neg_inf_v = -INFINITY;

        for (int h = 0; h < 1; ++h) {
            int h_offset = h*(n_kv*n_tokens);
            for (int j = 0; j < n_tokens; ++j) {
                const gpt2_pos    pos    = batch.pos[j];
                const gpt2_seq_id seq_id = batch.seq_id[j];

                for (int i = 0; i < n_kv; ++i) {
                    if (!kv_cache.cells[i].has_seq_id(seq_id) || kv_cache.cells[i].pos > pos) {
                        data_buf[h_offset + j*n_kv + i] = neg_inf_v;
                    }
                }
            }
        }

        ggml_backend_tensor_set(KQ_mask, data_buf.data(), 0, data_buf.size() * sizeof(float));
    }

    for (int il = 0; il < n_layer; ++il) {
        struct ggml_tensor * cur;

        // norm
        {
            // [ 768, N]
            cur = ggml_norm(ctx0, inpL, hparams.eps);

            // cur = ln_1_g*cur + ln_1_b
            // [ 768, N]
            cur = ggml_add(ctx0,
                    ggml_mul(ctx0,
                        cur,
                        model.layers[il].ln_1_g),
                    model.layers[il].ln_1_b);
        }

        // attn
        // [2304,        768] - model.layers[il].c_attn_attn_w
        // [2304,          1] - model.layers[il].c_attn_attn_b
        // [ 768,   n_tokens] - cur (in)
        // [2304,   n_tokens] - cur (out)
        //
        // cur = attn_w*cur + attn_b
        // [2304, n_tokens]
        {
            cur = ggml_mul_mat(ctx0,
                    model.layers[il].c_attn_attn_w,
                    cur);

            cur = ggml_add(ctx0,
                    cur,
                    model.layers[il].c_attn_attn_b);
        }

        // self-attention
        {
            struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd);
            struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*n_embd);
            struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*n_embd);

            // store key and value to memory
            if (n_tokens >= 1) {
                struct ggml_tensor * k = ggml_view_1d(ctx0, model.kv_cache.k, n_tokens*n_embd, (ggml_element_size(model.kv_cache.k)*n_embd)*(il*n_ctx + kv_head));
                struct ggml_tensor * v = ggml_view_1d(ctx0, model.kv_cache.v, n_tokens*n_embd, (ggml_element_size(model.kv_cache.v)*n_embd)*(il*n_ctx + kv_head));

                ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
                ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
            }

            // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
            // [64, N, 12]
            struct ggml_tensor * Q =
                ggml_permute(ctx0,
                        ggml_cpy(ctx0,
                            Qcur,
                            ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, n_tokens)),
                        0, 2, 1, 3);

            // K = Kmem.view(n_embd/n_head, n_head, n_kv).permute(0, 2, 1, 3)
            // [64, n_kv, 12]
            struct ggml_tensor * K =
                ggml_permute(ctx0,
                        ggml_reshape_3d(ctx0,
                            ggml_view_1d(ctx0, model.kv_cache.k, n_kv*n_embd, il*n_ctx*ggml_element_size(model.kv_cache.k)*n_embd),
                            n_embd/n_head, n_head, n_kv),
                        0, 2, 1, 3);

            // GG: flash attention
            //struct ggml_tensor * V =
            //    ggml_cpy(ctx0,
            //            ggml_permute(ctx0,
            //                ggml_reshape_3d(ctx0,
            //                    ggml_view_1d(ctx0, model.kv_cache.v, n_kv*n_embd, il*n_ctx*ggml_element_size(model.kv_cache.v)*n_embd),
            //                    n_embd/n_head, n_head, n_kv),
            //                1, 2, 0, 3),
            //            ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_embd/n_head, n_head));

            //struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true);

            // K * Q
            // [n_kv, n_tokens, 12]
            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);

            // KQ_scaled = KQ / sqrt(n_embd/n_head)
            // [n_kv, n_tokens, 12]
            struct ggml_tensor * KQ_scaled =
                ggml_scale(ctx0,
                        KQ,
                        KQ_scale);

            // KQ_masked = mask_past(KQ_scaled)
            // [n_kv, n_tokens, 12]
            struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);

            // KQ = soft_max(KQ_masked)
            // [n_kv, N, 12]
            struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);

            // V_trans = Vmem.view(n_embd/n_head, n_head, n_kv).permute(1, 2, 0, 3).contiguous()
            // [n_kv, 64, 12]
            struct ggml_tensor * V_trans =
                ggml_cpy(ctx0,
                        ggml_permute(ctx0,
                            ggml_reshape_3d(ctx0,
                                ggml_view_1d(ctx0, model.kv_cache.v, n_kv*n_embd, il*n_ctx*ggml_element_size(model.kv_cache.v)*n_embd),
                                n_embd/n_head, n_head, n_kv),
                            1, 2, 0, 3),
                        ggml_new_tensor_3d(ctx0, model.kv_cache.v->type, n_kv, n_embd/n_head, n_head));

            // KQV = transpose(V) * KQ_soft_max
            // [64, n_tokens, 12]
            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);

            // KQV_merged = KQV.permute(0, 2, 1, 3)
            // [64, 12, n_tokens]
            struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);

            // cur = KQV_merged.contiguous().view(n_embd, N)
            // [768, n_tokens]
            cur = ggml_cpy(ctx0,
                    KQV_merged,
                    ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens));
        }

        // projection
        // [ 768, 768] - model.layers[il].c_attn_proj_w
        // [ 768,   1] - model.layers[il].c_attn_proj_b
        // [ 768,   N] - cur (in)
        // [ 768,   N] - cur (out)
        //
        // cur = proj_w*cur + proj_b
        // [768, N]
        {
            cur = ggml_mul_mat(ctx0,
                    model.layers[il].c_attn_proj_w,
                    cur);

            cur = ggml_add(ctx0,
                    cur,
                    model.layers[il].c_attn_proj_b);
        }

        // add the input
        cur = ggml_add(ctx0, cur, inpL);

        struct ggml_tensor * inpFF = cur;

        // feed-forward network
        {
            // norm
            {
                cur = ggml_norm(ctx0, inpFF, hparams.eps);

                // cur = ln_2_g*cur + ln_2_b
                // [ 768, N]
                cur = ggml_add(ctx0,
                        ggml_mul(ctx0,
                            cur,
                            model.layers[il].ln_2_g),
                        model.layers[il].ln_2_b);
            }

            // fully connected
            // [3072, 768] - model.layers[il].c_mlp_fc_w
            // [3072,   1] - model.layers[il].c_mlp_fc_b
            // [ 768,   N] - cur (in)
            // [3072,   N] - cur (out)
            //
            // cur = fc_w*cur + fc_b
            // [3072, N]
            cur = ggml_mul_mat(ctx0,
                    model.layers[il].c_mlp_fc_w,
                    cur);

            cur = ggml_add(ctx0,
                    cur,
                    model.layers[il].c_mlp_fc_b);

            // GELU activation
            // [3072, N]
            cur = ggml_gelu(ctx0, cur);

            // projection
            // [ 768, 3072] - model.layers[il].c_mlp_proj_w
            // [ 768,    1] - model.layers[il].c_mlp_proj_b
            // [3072,    N] - cur (in)
            // [ 768,    N] - cur (out)
            //
            // cur = proj_w*cur + proj_b
            // [768, N]
            cur = ggml_mul_mat(ctx0,
                    model.layers[il].c_mlp_proj_w,
                    cur);

            cur = ggml_add(ctx0,
                    cur,
                    model.layers[il].c_mlp_proj_b);
        }

        // input for next layer
        inpL = ggml_add(ctx0, cur, inpFF);
    }

    // norm
    {
        // [ 768, N]
        inpL = ggml_norm(ctx0, inpL, hparams.eps);

        // inpL = ln_f_g*inpL + ln_f_b
        // [ 768, N]
        inpL = ggml_add(ctx0,
                ggml_mul(ctx0,
                    inpL,
                    model.ln_f_g),
                model.ln_f_b);
    }

    // inpL = WTE * inpL
    // [ 768, 50257] - model.lm_head
    // [ 768, N]     - inpL
    inpL = ggml_mul_mat(ctx0, model.lm_head, inpL);

    // logits -> probs
    //inpL = ggml_soft_max(ctx0, inpL);

    ggml_build_forward_expand(gf, inpL);

    ggml_free(ctx0);

    return gf;
}

static void gpt2_kv_cache_seq_cp(
        struct gpt2_kv_cache & cache,
                 gpt2_seq_id   seq_id_src,
                 gpt2_seq_id   seq_id_dst,
                    gpt2_pos   p0,
                    gpt2_pos   p1) {
    if (p0 < 0) p0 = 0;
    if (p1 < 0) p1 = std::numeric_limits<gpt2_pos>::max();

    for (uint32_t i = 0; i < cache.size; ++i) {
        if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
            cache.cells[i].seq_id.insert(seq_id_dst);
        }
    }
}

struct gpt2_batch gpt2_batch_init(int32_t n_tokens, int32_t embd) {
    gpt2_batch batch;

    if (embd) {
        batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd);
    } else {
        batch.token = (gpt_vocab::id *) malloc(sizeof(gpt_vocab::id) * n_tokens);
    }

    batch.pos    = (gpt2_pos *)    malloc(sizeof(gpt2_pos)    * n_tokens);
    batch.seq_id = (gpt2_seq_id *) malloc(sizeof(gpt2_seq_id) * n_tokens);
    batch.logits = (int8_t *)      malloc(sizeof(int8_t)      * n_tokens);

    return batch;
}

void gpt2_batch_free(struct gpt2_batch batch) {
    if (batch.token)  free(batch.token);
    if (batch.embd)   free(batch.embd);
    if (batch.pos)    free(batch.pos);
    if (batch.seq_id) free(batch.seq_id);
    if (batch.logits) free(batch.logits);
}

// Positive return values does not mean a fatal error, but rather a warning.
//   0 - success
// < 0 - error
int gpt2_decode(
        struct gpt2_model  & model,
        struct ggml_allocr * allocr,
        struct gpt2_batch    batch,
        int                  n_threads,
        std::vector<float> & logits) {
    const int32_t n_tokens = batch.n_tokens;
    const auto &  hparams  = model.hparams;
    const int     n_vocab  = hparams.n_vocab;

    if (n_tokens == 0) {
        printf("%s: n_tokens == 0", __func__);
        return -1;
    }

    GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd));

    auto & cache = model.kv_cache;

    for (int i = 0; i < n_tokens; i++) {
        cache.cells[cache.head + i].pos = batch.pos[i];
        cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i]);
    }

    cache.n = cache.head + n_tokens;

    // reset the allocator to free all the memory allocated during the previous inference
    ggml_allocr_reset(allocr);

    struct ggml_cgraph * gf = gpt2_graph(model, allocr, batch);

    // allocate tensors
    ggml_allocr_alloc_graph(allocr, gf);

    // run the computation
    if (ggml_backend_is_cpu(model.backend)) {
        ggml_backend_cpu_set_n_threads(model.backend, n_threads);
    }
#ifdef GGML_USE_METAL
    if (ggml_backend_is_metal(model.backend)) {
        ggml_backend_metal_set_n_cb(model.backend, n_threads);
    }
#endif
    ggml_backend_graph_compute(model.backend, gf);

    //if (n_past%100 == 0) {
    //    ggml_graph_print   (&gf);
    //    ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
    //}

    // in this case, the output tensor is the last one in the graph
    struct ggml_tensor * inpL = gf->nodes[gf->n_nodes - 1];

    if (batch.logits) {
        // return logits for all tokens
        logits.resize(n_vocab*n_tokens);
        for (int32_t i = 0; i < n_tokens; i++) {
            if (batch.logits[i] == 0) {
                continue;
            }
            ggml_backend_tensor_get(inpL, logits.data() + n_vocab*i, n_vocab*i*sizeof(float), sizeof(float)*n_vocab);
        }
    } else {
        // return result just for the last token
        logits.resize(n_vocab);
        ggml_backend_tensor_get(inpL, logits.data(), (n_vocab*(n_tokens-1))*sizeof(float), sizeof(float)*n_vocab);
    }

    // update the kv ring buffer
    cache.head += n_tokens;

    // ensure kv cache head points to a valid index.
    if (cache.head >= cache.size) {
        printf("%s: cache.head >= cache.size\n", __func__);
        return -2;
    }

    return 0;
}

int main(int argc, char ** argv) {
    ggml_time_init();

    const int64_t t_main_start_us = ggml_time_us();

    gpt_params params;

    if (gpt_params_parse(argc, argv, params) == false) {
        return 1;
    }

    if (params.seed < 0) {
        params.seed = time(NULL);
    }

    printf("%s: seed = %d\n", __func__, params.seed);

    std::mt19937 rng(params.seed);
    if (params.prompt.empty()) {
        params.prompt = gpt_random_prompt(rng);
    }

    int64_t t_load_us = 0;

    gpt_vocab vocab;
    gpt2_model model;

    // load the model
    {
        const int64_t t_start_us = ggml_time_us();

        if (!gpt2_model_load(params.model, model, vocab, params.n_ctx, params.n_gpu_layers)) {
            fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
            return 1;
        }

        t_load_us = ggml_time_us() - t_start_us;

        test_gpt_tokenizer(vocab, params.token_test);
    }

    // tokenize the prompt
    std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);

    // keep this buffer alive while evaluating the model
    ggml_backend_buffer_t buf_compute;

    const int n_parallel = params.n_parallel;
    const int n_batch_max = std::max(embd_inp.size(), (size_t)n_parallel);

    // create a gpt2_batch
    // we use this object to submit token data for decoding
    gpt2_batch batch = gpt2_batch_init(n_batch_max, 0);

    // prepare required memory and allocate the compute buffer
    struct ggml_allocr * allocr = NULL;
    {
        // alignment required by the backend
        size_t align = ggml_backend_get_alignment(model.backend);
        allocr = ggml_allocr_new_measure(align);

        batch.n_tokens = n_batch_max;

        // create the worst case graph for memory usage estimation
        struct ggml_cgraph * gf = gpt2_graph(model, allocr, batch);

        // compute the required memory
        size_t mem_size = ggml_allocr_alloc_graph(allocr, gf);

        // recreate the allocator with the required memory
        ggml_allocr_free(allocr);
        buf_compute = ggml_backend_alloc_buffer(model.backend, mem_size);
        allocr = ggml_allocr_new_from_buffer(buf_compute);

        fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0/1024.0);
    }

    int64_t t_sample_us  = 0;
    int64_t t_predict_us = 0;

    std::vector<float> logits;

    // evaluate the initial prompt
    batch.n_tokens = embd_inp.size();

    for (int32_t i = 0; i < batch.n_tokens; i++) {
        batch.token[i]  = embd_inp[i];
        batch.pos[i]    = i;
        batch.seq_id[i] = 0;
        batch.logits[i] = false;
    }

    // gpt2_decode will output logits only for the last token of the prompt
    batch.logits[batch.n_tokens - 1] = true;

    if (gpt2_decode(model, allocr, batch, params.n_threads, logits) != 0) {
        printf("%s: gpt2_decode() failed\n", __func__);
        return 1;
    }

    // assign the system KV cache to all parallel sequences
    // this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
    for (int32_t i = 1; i < n_parallel; ++i) {
        gpt2_kv_cache_seq_cp(model.kv_cache, 0, i, 0, batch.n_tokens);
    }

    if (n_parallel > 1) {
        printf("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
    }

    params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());

    printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
    printf("%s: number of tokens in prompt = %zu, first 8 tokens: ", __func__, embd_inp.size());
    for (int i = 0; i < std::min(8, (int) embd_inp.size()); i++) {
        printf("%d ", embd_inp[i]);
    }
    printf("\n\n");

    std::vector<gpt_vocab::token> streams(n_parallel);

    // remember the batch index of the last token for each parallel sequence
    // we need this to determine which logits to sample from
    std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);

    int n_cur     = batch.n_tokens;
    int n_len     = batch.n_tokens + params.n_predict;
    int n_decoded = 0;

    const int   n_vocab = model.hparams.n_vocab;
    const int   top_k = params.top_k;
    const float top_p = params.top_p;
    const float temp  = params.temp;

    while (n_cur < n_len) {
        batch.n_tokens = 0;

        for (int32_t i = 0; i < n_parallel; ++i) {
            if (i_batch[i] < 0) {
                // the stream has already finished
                continue;
            }

            auto * logits_i = logits.data() + i_batch[i]*n_vocab;

            gpt_vocab::id id = 0;
            {
                const int64_t t_start_sample_us = ggml_time_us();

                id = gpt_sample_top_k_top_p(vocab, logits_i, top_k, top_p, temp, rng);

                t_sample_us += ggml_time_us() - t_start_sample_us;
            }

            // is it an end of stream? -> mark the stream as finished
            if ((!params.ignore_eos && id == 50256) || n_cur == n_len - 1) {
                i_batch[i] = -1;
                printf("\n");
                if (n_parallel > 1) {
                    printf("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
                }

                continue;
            }

            auto& token = vocab.id_to_token[id];
            if (n_parallel == 1) {
                printf("%s", token.c_str());
                fflush(stdout);
            }

            streams[i] += token;

            // push this new token for next evaluation
            batch.token [batch.n_tokens] = id;
            batch.pos   [batch.n_tokens] = n_cur;
            batch.seq_id[batch.n_tokens] = i;
            batch.logits[batch.n_tokens] = true;

            i_batch[i] = batch.n_tokens;

            batch.n_tokens += 1;

            n_decoded += 1;
        }

        // all streams are finished
        if (batch.n_tokens == 0) {
            break;
        }

        n_cur += 1;

        {
            const int64_t t_start_us = ggml_time_us();

            // evaluate the current batch with the transformer model
            int ret_code = gpt2_decode(model, allocr, batch, params.n_threads, logits);
            if (ret_code != 0) {
                fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, ret_code);
                return 1;
            }

            t_predict_us += ggml_time_us() - t_start_us;
        }
    }

    if (n_parallel > 1) {
        printf("\n");

        for (int32_t i = 0; i < n_parallel; ++i) {
            printf("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
        }
    }

    // report timing
    {
        const int64_t t_main_end_us = ggml_time_us();

        printf("\n\n");
        printf("%s:     n_decoded = %8d\n",      __func__, n_decoded);
        printf("%s:     load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
        printf("%s:   sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
        printf("%s:  predict time = %8.2f ms\n", __func__, t_predict_us/1000.0f);
        printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
    }

    gpt2_batch_free(batch);
    ggml_free(model.ctx);

    ggml_backend_buffer_free(model.buffer_w);
    ggml_backend_buffer_free(model.kv_cache.buffer);
    ggml_backend_buffer_free(buf_compute);
    ggml_backend_free(model.backend);

    return 0;
}