File size: 5,448 Bytes
13d3ba0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#include "ggml/ggml.h"

#include "common.h"

#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <string>
#include <vector>
#include <algorithm>

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

struct mnist_model {
    struct ggml_tensor * conv2d_1_kernel;
    struct ggml_tensor * conv2d_1_bias;
    struct ggml_tensor * conv2d_2_kernel;
    struct ggml_tensor * conv2d_2_bias;
    struct ggml_tensor * dense_weight;
    struct ggml_tensor * dense_bias;
    struct ggml_context * ctx;
};

bool mnist_model_load(const std::string & fname, mnist_model & model) {
    struct gguf_init_params params = {
        /*.no_alloc   =*/ false,
        /*.ctx        =*/ &model.ctx,
    };
    gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
    if (!ctx) {
        fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
        return false;
    }
    model.conv2d_1_kernel = ggml_get_tensor(model.ctx, "kernel1");
    model.conv2d_1_bias = ggml_get_tensor(model.ctx, "bias1");
    model.conv2d_2_kernel = ggml_get_tensor(model.ctx, "kernel2");
    model.conv2d_2_bias = ggml_get_tensor(model.ctx, "bias2");
    model.dense_weight = ggml_get_tensor(model.ctx, "dense_w");
    model.dense_bias = ggml_get_tensor(model.ctx, "dense_b");
    return true;
}

int mnist_eval(
        const mnist_model & model,
        const int n_threads,
        std::vector<float> digit,
        const char * fname_cgraph
        )
{
    static size_t buf_size = 100000 * sizeof(float) * 4;
    static void * buf = malloc(buf_size);

    struct ggml_init_params params = {
        /*.mem_size   =*/ buf_size,
        /*.mem_buffer =*/ buf,
        /*.no_alloc   =*/ false,
    };

    struct ggml_context * ctx0 = ggml_init(params);
    struct ggml_cgraph gf = {};

    struct ggml_tensor * input = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, 28, 28, 1, 1);
    memcpy(input->data, digit.data(), ggml_nbytes(input));
    ggml_set_name(input, "input");
    ggml_tensor * cur = ggml_conv_2d(ctx0, model.conv2d_1_kernel, input, 1, 1, 0, 0, 1, 1);
    cur = ggml_add(ctx0, cur, model.conv2d_1_bias);
    cur = ggml_relu(ctx0, cur);
    // Output shape after Conv2D: (26 26 32 1)
    cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0);
    // Output shape after MaxPooling2D: (13 13 32 1)
    cur = ggml_conv_2d(ctx0, model.conv2d_2_kernel, cur, 1, 1, 0, 0, 1, 1);
    cur = ggml_add(ctx0, cur, model.conv2d_2_bias);
    cur = ggml_relu(ctx0, cur);
    // Output shape after Conv2D: (11 11 64 1)
    cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0);
    // Output shape after MaxPooling2D: (5 5 64 1)
    cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 2, 0, 3));
    // Output shape after permute: (64 5 5 1)
    cur = ggml_reshape_2d(ctx0, cur, 1600, 1);
    // Final Dense layer
    cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.dense_weight, cur), model.dense_bias);
    ggml_tensor * probs = ggml_soft_max(ctx0, cur);
    ggml_set_name(probs, "probs");

    ggml_build_forward_expand(&gf, probs);
    ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);

    //ggml_graph_print(&gf);
    ggml_graph_dump_dot(&gf, NULL, "mnist-cnn.dot");

    if (fname_cgraph) {
        // export the compute graph for later use
        // see the "mnist-cpu" example
        ggml_graph_export(&gf, fname_cgraph);

        fprintf(stderr, "%s: exported compute graph to '%s'\n", __func__, fname_cgraph);
    }

    const float * probs_data = ggml_get_data_f32(probs);
    const int prediction = std::max_element(probs_data, probs_data + 10) - probs_data;
    ggml_free(ctx0);
    return prediction;
}

int main(int argc, char ** argv) {
    srand(time(NULL));
    ggml_time_init();

    if (argc != 3) {
        fprintf(stderr, "Usage: %s models/mnist/mnist-cnn.gguf models/mnist/t10k-images.idx3-ubyte\n", argv[0]);
        exit(0);
    }

    uint8_t buf[784];
    mnist_model model;
    std::vector<float> digit;

    // load the model
    {
        const int64_t t_start_us = ggml_time_us();

        if (!mnist_model_load(argv[1], model)) {
            fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, argv[1]);
            return 1;
        }

        const int64_t t_load_us = ggml_time_us() - t_start_us;

        fprintf(stdout, "%s: loaded model in %8.2f ms\n", __func__, t_load_us / 1000.0f);
    }

    // read a random digit from the test set
    {
        std::ifstream fin(argv[2], std::ios::binary);
        if (!fin) {
            fprintf(stderr, "%s: failed to open '%s'\n", __func__, argv[2]);
            return 1;
        }

        // seek to a random digit: 16-byte header + 28*28 * (random 0 - 10000)
        fin.seekg(16 + 784 * (rand() % 10000));
        fin.read((char *) &buf, sizeof(buf));
    }

    // render the digit in ASCII
    {
        digit.resize(sizeof(buf));

        for (int row = 0; row < 28; row++) {
            for (int col = 0; col < 28; col++) {
                fprintf(stderr, "%c ", (float)buf[row*28 + col] > 230 ? '*' : '_');
                digit[row*28 + col] = ((float)buf[row*28 + col] / 255.0f);
            }

            fprintf(stderr, "\n");
        }

        fprintf(stderr, "\n");
    }

    const int prediction = mnist_eval(model, 1, digit, nullptr);
    fprintf(stdout, "%s: predicted digit is %d\n", __func__, prediction);
    ggml_free(model.ctx);
    return 0;
}