File size: 21,785 Bytes
13d3ba0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
#import "main-mtl.h"

#import "ggml/ggml.h"

#import <Foundation/Foundation.h>
#import <Metal/Metal.h>
#import <MetalPerformanceShaders/MetalPerformanceShaders.h>

// TODO: couldn't get this to work
//#define GGML_MTL_HEAP

struct ggml_mtl_context {
    struct ggml_context * ctx_data;
    struct ggml_context * ctx_eval;
    struct ggml_context * ctx_work;

    id<MTLDevice>       device;
    id<MTLCommandQueue> queue;
    id<MTLLibrary>      library;

#ifdef GGML_MTL_HEAP
    id<MTLHeap> heap_data;
    id<MTLHeap> heap_eval;
#else
    id<MTLBuffer> buffer_data;
    id<MTLBuffer> buffer_eval;
#endif

    id<MTLBuffer> out;

    // custom kernels
    id<MTLFunction>             function_add;
    id<MTLComputePipelineState> pipeline_add;

    id<MTLFunction>             function_relu;
    id<MTLComputePipelineState> pipeline_relu;

    id<MTLFunction>             function_soft_max;
    id<MTLComputePipelineState> pipeline_soft_max;
};

// MSL code
NSString * const msl_library_mnist = @"\
#include <metal_stdlib>                                                                 \n\
using namespace metal;                                                                  \n\
                                                                                        \n\
#define MAX(x, y) ((x) > (y) ? (x) : (y))                                               \n\
                                                                                        \n\
constant int k_digits [[function_constant(0)]];                                         \n\
                                                                                        \n\
kernel void kernel_add(                                                                 \n\
        device const float * src0,                                                      \n\
        device const float * src1,                                                      \n\
        device float * dst,                                                             \n\
        uint gid[[thread_position_in_grid]]) {                                          \n\
    dst[gid] = src0[gid] + src1[gid];                                                   \n\
}                                                                                       \n\
                                                                                        \n\
kernel void kernel_relu(                                                                \n\
        device const float * src,                                                       \n\
        device       float * dst,                                                       \n\
        uint gid[[thread_position_in_grid]]) {                                          \n\
    dst[gid] = max(0.0f, src[gid]);                                                     \n\
}                                                                                       \n\
                                                                                        \n\
kernel void kernel_soft_max(                                                            \n\
        device const float * src,                                                       \n\
        device       float * dst,                                                       \n\
        uint gid[[thread_position_in_grid]]) {                                          \n\
    float max = 0.0f;                                                                   \n\
    for (int i = 0; i < k_digits; i++) {                                                \n\
        max = MAX(max, src[i]);                                                         \n\
    }                                                                                   \n\
    float sum = 0.0f;                                                                   \n\
    for (int i = 0; i < k_digits; i++) {                                                \n\
        dst[i] = exp(src[i] - max);                                                     \n\
        sum += dst[i];                                                                  \n\
    }                                                                                   \n\
    for (int i = 0; i < k_digits; i++) {                                                \n\
        dst[i] /= sum;                                                                  \n\
    }                                                                                   \n\
}                                                                                       \n\
";

struct ggml_mtl_context * mnist_mtl_init(
    struct ggml_context * ctx_data,
    struct ggml_context * ctx_eval,
    struct ggml_context * ctx_work,
    struct ggml_cgraph  * gf) {
    fprintf(stderr, "%s: allocating\n", __func__);

    struct ggml_mtl_context * ctx = malloc(sizeof(struct ggml_mtl_context));

    ctx->ctx_data = ctx_data;
    ctx->ctx_eval = ctx_eval;
    ctx->ctx_work = ctx_work;

    ctx->device = MTLCreateSystemDefaultDevice();
    ctx->queue  = [ctx->device newCommandQueue];

    // determine if we can use MPS
    if (MPSSupportsMTLDevice(ctx->device)) {
        fprintf(stderr, "%s: using MPS\n", __func__);
    } else {
        fprintf(stderr, "%s: not using MPS\n", __func__);
        GGML_ASSERT(false && "MPS not supported");
    }

    // compile from source string and show compile log
    {
        NSError * error = nil;
        ctx->library = [ctx->device newLibraryWithSource:msl_library_mnist options:nil error:&error];
        if (error) {
            fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
            exit(1);
        }
    }

    // load kernels
    {
        const int k_digits = ggml_graph_get_tensor(gf, "probs")->ne[0];

        MTLFunctionConstantValues * constants = [MTLFunctionConstantValues new];
        [constants setConstantValue:&k_digits type:MTLDataTypeInt withName:@"k_digits"];

        ctx->function_add = [ctx->library newFunctionWithName:@"kernel_add"];
        ctx->pipeline_add = [ctx->device newComputePipelineStateWithFunction:ctx->function_add error:nil];
        fprintf(stderr, "%s: loaded kernel_add: %p\n", __func__, (void *) ctx->pipeline_add);

        ctx->function_relu = [ctx->library newFunctionWithName:@"kernel_relu"];
        ctx->pipeline_relu = [ctx->device newComputePipelineStateWithFunction:ctx->function_relu error:nil];
        fprintf(stderr, "%s: loaded kernel_relu: %p\n", __func__, (void *) ctx->pipeline_relu);

        ctx->function_soft_max = [ctx->library newFunctionWithName:@"kernel_soft_max" constantValues:constants error:nil];
        ctx->pipeline_soft_max = [ctx->device newComputePipelineStateWithFunction:ctx->function_soft_max error:nil];
        fprintf(stderr, "%s: loaded kernel_soft_max: %p\n", __func__, (void *) ctx->pipeline_soft_max);
    }

#ifdef GGML_MTL_HEAP
    // MTLHeap approach

    // pin ctx_data memory to GPU
    // use MTLStorageModeShared to allow us to initialize the weights from the CPU
    // TODO: how to use MTLStorageModeManaged?
    // TODO: see if we can avoid this copy somehow
    {
        const void * mem_buffer = ggml_get_mem_buffer(ctx_data);
        const size_t mem_size   = ggml_get_mem_size(ctx_data);

        MTLHeapDescriptor * heap_desc = [MTLHeapDescriptor new];
        heap_desc.storageMode = MTLStorageModeShared;
        heap_desc.size        = mem_size;

        printf("heap_desc.size = %zu\n", mem_size);

        ctx->heap_data = [ctx->device newHeapWithDescriptor:heap_desc];
        [ctx->heap_data setPurgeableState:MTLPurgeableStateNonVolatile]; // TODO: is this needed?
        ctx->heap_data.label = @"heap_data";

        printf("ctx->heap_data.size = %zu\n", [ctx->heap_data size]);

        id<MTLBuffer> buffer = [ctx->heap_data newBufferWithLength:mem_size options:MTLResourceStorageModeShared];
        if (!buffer) {
            fprintf(stderr, "%s: error: failed to allocate buffer\n", __func__);
            exit(1);
        }

        // copy data from CPU to GPU
        memcpy([buffer contents], mem_buffer, mem_size);

        fprintf(stderr, "%s: allocated data heap, size = %zu\n", __func__, mem_size);
    }

    // pin ctx_eval memory to GPU
    // this heap will be used for the intermediate results of the evaluation
    {
        const size_t mem_size = ggml_get_mem_size(ctx_eval);

        MTLHeapDescriptor * heap_desc = [MTLHeapDescriptor new];
        heap_desc.storageMode = MTLStorageModePrivate; // GPU only
        heap_desc.size        = mem_size;

        ctx->heap_eval = [ctx->device newHeapWithDescriptor:heap_desc];
        [ctx->heap_eval setPurgeableState:MTLPurgeableStateNonVolatile]; // TODO: is this needed?

        fprintf(stderr, "%s: allocated eval heap, size = %zu\n", __func__, mem_size);
    }
#else
    // MTLBuffer approach

    // pin ctx_data memory to GPU
    // use MTLStorageModeShared to allow us to initialize the weights from the CPU
    // TODO: how to use MTLStorageModeManaged?
    // TODO: see if we can avoid this copy somehow
    {
        const void * mem_buffer = ggml_get_mem_buffer(ctx_data);
        const size_t mem_size   = ggml_get_mem_size(ctx_data);

        ctx->buffer_data = [ctx->device newBufferWithBytes:mem_buffer length:mem_size options:MTLResourceStorageModeShared];

        fprintf(stderr, "%s: allocated data buffer, size = %zu\n", __func__, mem_size);
    }

    // pin ctx_eval memory to GPU
    // this buffer will be used for the intermediate results of the evaluation
    {
        const size_t mem_size = ggml_get_mem_size(ctx_eval);

        ctx->buffer_eval = [ctx->device newBufferWithLength:mem_size options:MTLResourceStorageModePrivate];

        fprintf(stderr, "%s: allocated eval buffer, size = %zu\n", __func__, mem_size);
    }
#endif

    // allocate buffer for result extraction
    {
        const size_t mem_size = ggml_nbytes(gf->nodes[gf->n_nodes - 1]);

        ctx->out = [ctx->device newBufferWithLength:mem_size options:MTLResourceStorageModeShared];

        fprintf(stderr, "%s: allocated out buffer, size = %zu\n", __func__, mem_size);
    }

    return ctx;
}

void mnist_mtl_free(struct ggml_mtl_context * ctx) {
    fprintf(stderr, "%s: deallocating\n", __func__);

    free(ctx);
}

#ifdef GGML_MTL_HEAP

// make a view of the respective MTL heap
id<MTLBuffer> mnist_mtl_get_buffer_on_heap(struct ggml_mtl_context * ctx, struct ggml_tensor * t) {
    const int64_t offs_data = (int64_t) t->data - (int64_t) ggml_get_mem_buffer(ctx->ctx_data);
    const int64_t offs_eval = (int64_t) t->data - (int64_t) ggml_get_mem_buffer(ctx->ctx_eval);

    const bool is_data = (offs_eval < 0) || (offs_data >= 0 && offs_data < offs_eval);

    const size_t t_size = ggml_nbytes(t);
    const size_t t_offs = is_data ? offs_data : offs_eval;

    id<MTLBuffer> result;

    if (is_data) {
        fprintf(stderr, "%s: data tensor '%16s', offs = %8ld, size = %8ld\n", __func__, t->name, t_offs, t_size);
        result = [ctx->heap_data newBufferWithLength:t_size options:MTLResourceStorageModeShared offset:t_offs];
    } else {
        fprintf(stderr, "%s: eval tensor '%16s', offs = %8ld, size = %8ld\n", __func__, t->name, t_offs, t_size);
        result = [ctx->heap_eval newBufferWithLength:t_size options:MTLResourceStorageModePrivate offset:t_offs];
    }

    if (result == nil) {
        fprintf(stderr, "%s: error: buffer is nil\n", __func__);
        GGML_ASSERT(false);
    }

    return result;
}

#else

// get data / eval buffer + offset
id<MTLBuffer> mnist_mtl_get_buffer(struct ggml_mtl_context * ctx, struct ggml_tensor * t, size_t * offs) {
    const int64_t offs_data = (int64_t) t->data - (int64_t) ggml_get_mem_buffer(ctx->ctx_data);
    const int64_t offs_eval = (int64_t) t->data - (int64_t) ggml_get_mem_buffer(ctx->ctx_eval);

    const bool is_data = (offs_eval < 0) || (offs_data >= 0 && offs_data < offs_eval);

    const size_t t_size = ggml_nbytes(t);
    const size_t t_offs = is_data ? offs_data : offs_eval;

    id<MTLBuffer> result;

    if (is_data) {
        fprintf(stderr, "%s: data tensor '%16s', offs = %8ld, size = %8ld\n", __func__, t->name, t_offs, t_size);
        result = ctx->buffer_data;
    } else {
        fprintf(stderr, "%s: eval tensor '%16s', offs = %8ld, size = %8ld\n", __func__, t->name, t_offs, t_size);
        result = ctx->buffer_eval;
    }

    if (result == nil) {
        fprintf(stderr, "%s: error: buffer is nil\n", __func__);
        GGML_ASSERT(false);
    }

    if (offs != nil) {
        *offs = t_offs;
    }

    return result;
}

#endif

int mnist_mtl_eval(
        struct ggml_mtl_context * ctx,
        struct ggml_cgraph      * gf) {
    fprintf(stderr, "%s: evaluating\n", __func__);

    id<MTLCommandBuffer> command_buffer  = [ctx->queue commandBuffer];
    id<MTLComputeCommandEncoder> encoder = nil;

    size_t offs_src0;
    size_t offs_src1;
    size_t offs_dst;

    // copy the input data to the GPU
    {
        struct ggml_tensor * inp = ggml_graph_get_tensor(gf, "input");

        id<MTLBuffer> id_dst = mnist_mtl_get_buffer(ctx, inp, &offs_src0);

        memcpy((char *) id_dst.contents + offs_src0, inp->data, ggml_nbytes(inp));
    }

    for (int i = 0; i < gf->n_nodes; ++i) {
        fprintf(stderr, "%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));

        switch (gf->nodes[i]->op) {
            case GGML_OP_ADD:
                {
                    if (encoder == nil) {
                        encoder = [command_buffer computeCommandEncoder];
                    }

                    id<MTLBuffer> id_src0 = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[0], &offs_src0);
                    id<MTLBuffer> id_src1 = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[1], &offs_src1);
                    id<MTLBuffer> id_dst  = mnist_mtl_get_buffer(ctx, gf->nodes[i],         &offs_dst);

                    [encoder setComputePipelineState:ctx->pipeline_add];
                    [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
                    [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
                    [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];

                    const int64_t n = ggml_nelements(gf->nodes[i]);

                    [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
                } break;
            case GGML_OP_UNARY:
                switch (ggml_get_unary_op(gf->nodes[i])) {
                    case GGML_UNARY_OP_RELU:
                        {
                            if (encoder == nil) {
                                encoder = [command_buffer computeCommandEncoder];
                            }

                            id<MTLBuffer> id_src = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[0], &offs_src0);
                            id<MTLBuffer> id_dst = mnist_mtl_get_buffer(ctx, gf->nodes[i],       &offs_dst);

                            [encoder setComputePipelineState:ctx->pipeline_relu];
                            [encoder setBuffer:id_src offset:offs_src0 atIndex:0];
                            [encoder setBuffer:id_dst offset:offs_dst  atIndex:1];

                            const int64_t n = ggml_nelements(gf->nodes[i]);

                            [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
                        } break;
                    default:
                        {
                            fprintf(stderr, "%s: node %3d, op = %8s, unary op %d not implemented\n", __func__, i, ggml_op_name(gf->nodes[i]->op), (int) ggml_get_unary_op(gf->nodes[i]));
                            GGML_ASSERT(false);
                            return -1;
                        }
                        break;
                } break;
            case GGML_OP_SOFT_MAX:
                {
#if 0
                    // NOTE: MPSMatrixSoftMax is not working properly, probably there is a bug

                    if (encoder != nil) {
                        [encoder endEncoding];
                        encoder = nil;
                    }

                    // use MPSMatrixSoftMax
                    id<MTLBuffer> id_src = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src0, &offs_src0);
                    id<MTLBuffer> id_dst = mnist_mtl_get_buffer(ctx, gf->nodes[i],       &offs_dst);

                    MPSMatrixDescriptor * desc = [MPSMatrixDescriptor
                        matrixDescriptorWithRows:1 columns:gf->nodes[i]->ne[0] rowBytes:gf->nodes[i]->nb[1] dataType:MPSDataTypeFloat32];

                    MPSMatrix * mat_src = [[MPSMatrix alloc] initWithBuffer:id_src offset:offs_src0 descriptor:desc];
                    MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst  descriptor:desc];

                    MPSMatrixSoftMax * softmax = [[MPSMatrixSoftMax alloc] initWithDevice:ctx->device];

                    [softmax encodeToCommandBuffer:command_buffer inputMatrix:mat_src resultMatrix:mat_dst];
#else
                    if (encoder == nil) {
                        encoder = [command_buffer computeCommandEncoder];
                    }

                    id<MTLBuffer> id_src = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[0], &offs_src0);
                    id<MTLBuffer> id_dst = mnist_mtl_get_buffer(ctx, gf->nodes[i],       &offs_dst);

                    [encoder setComputePipelineState:ctx->pipeline_soft_max];
                    [encoder setBuffer:id_src offset:offs_src0 atIndex:0];
                    [encoder setBuffer:id_dst offset:offs_dst  atIndex:1];

                    [encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
#endif
                } break;
            case GGML_OP_MUL_MAT:
                {
                    if (encoder != nil) {
                        [encoder endEncoding];
                        encoder = nil;
                    }

                    // use MPSMatrixMultiplication
                    id<MTLBuffer> id_src0 = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[0], &offs_src0);
                    id<MTLBuffer> id_src1 = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[1], &offs_src1);
                    id<MTLBuffer> id_dst  = mnist_mtl_get_buffer(ctx, gf->nodes[i],         &offs_dst);

                    const int64_t ncols0 = gf->nodes[i]->src[0]->ne[0];
                    const int64_t nrows0 = gf->nodes[i]->src[0]->ne[1];

                    const int64_t ncols1 = gf->nodes[i]->src[1]->ne[0];
                    const int64_t nrows1 = gf->nodes[i]->src[1]->ne[1];

                    const int64_t ncols2 = gf->nodes[i]->ne[0];
                    const int64_t nrows2 = gf->nodes[i]->ne[1];

                    GGML_ASSERT(ncols0 == ncols1);

                    MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor
                        matrixDescriptorWithRows:nrows0 columns:ncols0 rowBytes:gf->nodes[i]->src[0]->nb[1] dataType:MPSDataTypeFloat32];
                    MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor
                        matrixDescriptorWithRows:nrows1 columns:ncols1 rowBytes:gf->nodes[i]->src[1]->nb[1] dataType:MPSDataTypeFloat32];
                    MPSMatrixDescriptor * desc2 = [MPSMatrixDescriptor
                        matrixDescriptorWithRows:nrows2 columns:ncols2 rowBytes:gf->nodes[i]->nb[1] dataType:MPSDataTypeFloat32];

                    MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0 descriptor:desc0];
                    MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1 descriptor:desc1];
                    MPSMatrix * mat_dst  = [[MPSMatrix alloc] initWithBuffer:id_dst  offset:offs_dst  descriptor:desc2];

                    MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc] initWithDevice:ctx->device
                        transposeLeft:false transposeRight:true resultRows:nrows1 resultColumns:nrows0 interiorColumns:ncols0 alpha:1.0 beta:0.0];

                    [mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst];
                } break;
            default:
                {
                    fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
                    GGML_ASSERT(false);
                    return -1;
                }
        }
    }

    // extract results from the GPU
    {
        if (encoder != nil) {
            [encoder endEncoding];
            encoder = nil;
        }

        struct ggml_tensor * out = gf->nodes[gf->n_nodes - 1];

        id<MTLBuffer> id_src = mnist_mtl_get_buffer(ctx, out, &offs_src0);
        id<MTLBuffer> id_dst = ctx->out;

        id<MTLBlitCommandEncoder> encoder_blit = [command_buffer blitCommandEncoder];
        [encoder_blit copyFromBuffer:id_src sourceOffset:offs_src0 toBuffer:id_dst destinationOffset:0 size:ggml_nbytes(out)];
        [encoder_blit endEncoding];
    }

    [command_buffer commit];
    [command_buffer waitUntilCompleted];

    {
        const double time_elapsed = [command_buffer GPUEndTime] - [command_buffer GPUStartTime];
        fprintf(stderr, "%s: time elapsed = %f\n", __func__, time_elapsed);
    }

    // select the most probable digit
    int result = -1;
    {
        const float * probs = ctx->out.contents;

        float prob = probs[0];

        for (int i = 0; i < 10; ++i) {
            fprintf(stderr, "%s: probs[%2d] = %f\n", __func__, i, probs[i]);

            if (probs[i] > prob) {
                result = i;
                prob = probs[i];
            }
        }
    }

    return result;
}