File size: 9,602 Bytes
13d3ba0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
#include "ggml/ggml.h"

#include "common.h"

#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <string>
#include <vector>
#include <algorithm>

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

// default hparams
struct mnist_hparams {
    int32_t n_input   = 784;
    int32_t n_hidden  = 500;
    int32_t n_classes = 10;
};

struct mnist_model {
    mnist_hparams hparams;

    struct ggml_tensor * fc1_weight;
    struct ggml_tensor * fc1_bias;

    struct ggml_tensor * fc2_weight;
    struct ggml_tensor * fc2_bias;

    struct ggml_context * ctx;
};

// load the model's weights from a file
bool mnist_model_load(const std::string & fname, mnist_model & model) {
    printf("%s: loading model from '%s'\n", __func__, fname.c_str());

    auto fin = std::ifstream(fname, std::ios::binary);
    if (!fin) {
        fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
        return false;
    }

    // verify magic
    {
        uint32_t magic;
        fin.read((char *) &magic, sizeof(magic));
        if (magic != GGML_FILE_MAGIC) {
            fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
            return false;
        }
    }

    auto & ctx = model.ctx;

    size_t ctx_size = 0;

    {
        const auto & hparams = model.hparams;

        const int n_input   = hparams.n_input;
        const int n_hidden  = hparams.n_hidden;
        const int n_classes = hparams.n_classes;

        ctx_size += n_input * n_hidden * ggml_type_sizef(GGML_TYPE_F32); // fc1 weight
        ctx_size +=           n_hidden * ggml_type_sizef(GGML_TYPE_F32); // fc1 bias

        ctx_size += n_hidden * n_classes * ggml_type_sizef(GGML_TYPE_F32); // fc2 weight
        ctx_size +=            n_classes * ggml_type_sizef(GGML_TYPE_F32); // fc2 bias

        printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
    }

    // create the ggml context
    {
        struct ggml_init_params params = {
            /*.mem_size   =*/ ctx_size + 1024*1024,
            /*.mem_buffer =*/ NULL,
            /*.no_alloc   =*/ false,
        };

        model.ctx = ggml_init(params);
        if (!model.ctx) {
            fprintf(stderr, "%s: ggml_init() failed\n", __func__);
            return false;
        }
    }

    // Read FC1 layer 1
    {
        // Read dimensions
        int32_t n_dims;
        fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));

        {
            int32_t ne_weight[2] = { 1, 1 };
            for (int i = 0; i < n_dims; ++i) {
                fin.read(reinterpret_cast<char *>(&ne_weight[i]), sizeof(ne_weight[i]));
            }

            // FC1 dimensions taken from file, eg. 768x500
            model.hparams.n_input  = ne_weight[0];
            model.hparams.n_hidden = ne_weight[1];

            model.fc1_weight = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, model.hparams.n_input, model.hparams.n_hidden);
            fin.read(reinterpret_cast<char *>(model.fc1_weight->data), ggml_nbytes(model.fc1_weight));
            ggml_set_name(model.fc1_weight, "fc1_weight");
        }

        {
            int32_t ne_bias[2] = { 1, 1 };
            for (int i = 0; i < n_dims; ++i) {
                fin.read(reinterpret_cast<char *>(&ne_bias[i]), sizeof(ne_bias[i]));
            }

            model.fc1_bias = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_hidden);
            fin.read(reinterpret_cast<char *>(model.fc1_bias->data), ggml_nbytes(model.fc1_bias));
            ggml_set_name(model.fc1_bias, "fc1_bias");

            // just for testing purposes, set some parameters to non-zero
            model.fc1_bias->op_params[0] = 0xdeadbeef;
        }
    }

    // Read FC2 layer 2
    {
        // Read dimensions
        int32_t n_dims;
        fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));

        {
            int32_t ne_weight[2] = { 1, 1 };
            for (int i = 0; i < n_dims; ++i) {
                fin.read(reinterpret_cast<char *>(&ne_weight[i]), sizeof(ne_weight[i]));
            }

            // FC1 dimensions taken from file, eg. 10x500
            model.hparams.n_classes = ne_weight[1];

            model.fc2_weight = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, model.hparams.n_hidden, model.hparams.n_classes);
            fin.read(reinterpret_cast<char *>(model.fc2_weight->data), ggml_nbytes(model.fc2_weight));
            ggml_set_name(model.fc2_weight, "fc2_weight");
        }

        {
            int32_t ne_bias[2] = { 1, 1 };
            for (int i = 0; i < n_dims; ++i) {
                fin.read(reinterpret_cast<char *>(&ne_bias[i]), sizeof(ne_bias[i]));
            }

            model.fc2_bias = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_classes);
            fin.read(reinterpret_cast<char *>(model.fc2_bias->data), ggml_nbytes(model.fc2_bias));
            ggml_set_name(model.fc2_bias, "fc2_bias");
        }
    }

    fin.close();

    return true;
}

// evaluate the model
//
//   - model:     the model
//   - n_threads: number of threads to use
//   - digit:     784 pixel values
//
// returns 0 - 9 prediction
int mnist_eval(
        const mnist_model & model,
        const int n_threads,
        std::vector<float> digit,
        const char * fname_cgraph
        ) {

    const auto & hparams = model.hparams;

    static size_t buf_size = hparams.n_input * sizeof(float) * 4;
    static void * buf = malloc(buf_size);

    struct ggml_init_params params = {
        /*.mem_size   =*/ buf_size,
        /*.mem_buffer =*/ buf,
        /*.no_alloc   =*/ false,
    };

    struct ggml_context * ctx0 = ggml_init(params);
    struct ggml_cgraph gf = {};

    struct ggml_tensor * input = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, hparams.n_input);
    memcpy(input->data, digit.data(), ggml_nbytes(input));
    ggml_set_name(input, "input");

    // fc1 MLP = Ax + b
    ggml_tensor * fc1 = ggml_add(ctx0, ggml_mul_mat(ctx0, model.fc1_weight, input),                model.fc1_bias);
    ggml_tensor * fc2 = ggml_add(ctx0, ggml_mul_mat(ctx0, model.fc2_weight, ggml_relu(ctx0, fc1)), model.fc2_bias);

    // soft max
    ggml_tensor * probs = ggml_soft_max(ctx0, fc2);
    ggml_set_name(probs, "probs");

    // build / export / run the computation graph
    ggml_build_forward_expand(&gf, probs);
    ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);

    //ggml_graph_print   (&gf);
    ggml_graph_dump_dot(&gf, NULL, "mnist.dot");

    if (fname_cgraph) {
        // export the compute graph for later use
        // see the "mnist-cpu" example
        ggml_graph_export(&gf, "mnist.ggml");

        fprintf(stderr, "%s: exported compute graph to '%s'\n", __func__, fname_cgraph);
    }

    const float * probs_data = ggml_get_data_f32(probs);

    const int prediction = std::max_element(probs_data, probs_data + 10) - probs_data;

    ggml_free(ctx0);

    return prediction;
}

#ifdef __cplusplus
extern "C" {
#endif

int wasm_eval(uint8_t * digitPtr) {
    mnist_model model;
    if (!mnist_model_load("models/mnist/ggml-model-f32.bin", model)) {
        fprintf(stderr, "error loading model\n");
        return -1;
    }
    std::vector<float> digit(digitPtr, digitPtr + 784);
    int result = mnist_eval(model, 1, digit, nullptr);
    ggml_free(model.ctx);

    return result;
}

int wasm_random_digit(char * digitPtr) {
    auto fin = std::ifstream("models/mnist/t10k-images.idx3-ubyte", std::ios::binary);
    if (!fin) {
        fprintf(stderr, "failed to open digits file\n");
        return 0;
    }
    srand(time(NULL));

    // Seek to a random digit: 16-byte header + 28*28 * (random 0 - 10000)
    fin.seekg(16 + 784 * (rand() % 10000));
    fin.read(digitPtr, 784);

    return 1;
}

#ifdef __cplusplus
}
#endif

int main(int argc, char ** argv) {
    srand(time(NULL));
    ggml_time_init();

    if (argc != 3) {
        fprintf(stderr, "Usage: %s models/mnist/ggml-model-f32.bin models/mnist/t10k-images.idx3-ubyte\n", argv[0]);
        exit(0);
    }

    uint8_t buf[784];
    mnist_model model;
    std::vector<float> digit;

    // load the model
    {
        const int64_t t_start_us = ggml_time_us();

        if (!mnist_model_load(argv[1], model)) {
            fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, "models/ggml-model-f32.bin");
            return 1;
        }

        const int64_t t_load_us = ggml_time_us() - t_start_us;

        fprintf(stdout, "%s: loaded model in %8.2f ms\n", __func__, t_load_us / 1000.0f);
    }

    // read a random digit from the test set
    {
        std::ifstream fin(argv[2], std::ios::binary);
        if (!fin) {
            fprintf(stderr, "%s: failed to open '%s'\n", __func__, argv[2]);
            return 1;
        }

        // seek to a random digit: 16-byte header + 28*28 * (random 0 - 10000)
        fin.seekg(16 + 784 * (rand() % 10000));
        fin.read((char *) &buf, sizeof(buf));
    }

    // render the digit in ASCII
    {
        digit.resize(sizeof(buf));

        for (int row = 0; row < 28; row++) {
            for (int col = 0; col < 28; col++) {
                fprintf(stderr, "%c ", (float)buf[row*28 + col] > 230 ? '*' : '_');
                digit[row*28 + col] = ((float)buf[row*28 + col]);
            }

            fprintf(stderr, "\n");
        }

        fprintf(stderr, "\n");
    }

    const int prediction = mnist_eval(model, 1, digit, "mnist.ggml");

    fprintf(stdout, "%s: predicted digit is %d\n", __func__, prediction);

    ggml_free(model.ctx);

    return 0;
}