File size: 3,310 Bytes
13d3ba0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
# SAM.cpp
Inference of Meta's [Segment Anything Model](https://github.com/facebookresearch/segment-anything/) in pure C/C++
## Description
The example currently supports only the [ViT-B SAM model checkpoint](https://huggingface.co/facebook/sam-vit-base).
## Next steps
- [X] Reduce memory usage by utilizing the new ggml-alloc
- [X] Remove redundant graph nodes
- [ ] Make inference faster
- [X] Fix the difference in output masks compared to the PyTorch implementation
- [X] Filter masks based on stability score
- [ ] Add support for user input
- [ ] Support F16 for heavy F32 ops
- [ ] Test quantization
- [X] Support bigger model checkpoints
- [ ] GPU support
## Quick start
```bash
git clone https://github.com/ggerganov/ggml
cd ggml
# Install Python dependencies
python3 -m pip install -r requirements.txt
# Convert PTH model to ggml
python convert-pth-to-ggml.py examples/sam/sam_vit_b_01ec64.pth . 1
# Build ggml + examples
mkdir build && cd build
cmake .. && make -j4
# run inference
./bin/sam -t 16 -i ../img.jpg -m examples/sam/ggml-model-f16.bin
```
## Downloading and converting the model checkpoints
You can download a [model checkpoint](https://github.com/facebookresearch/segment-anything/tree/main#model-checkpoints) and convert it to `ggml` format using the script `convert-pth-to-ggml.py`:
```
# Convert PTH model to ggml
python convert-pth-to-ggml.py examples/sam/sam_vit_b_01ec64.pth . 1
```
## Example output on M2 Ultra
```
$ ▶ make -j sam && time ./bin/sam -t 8 -i img.jpg
[ 28%] Built target common
[ 71%] Built target ggml
[100%] Built target sam
main: seed = 1693224265
main: loaded image 'img.jpg' (680 x 453)
sam_image_preprocess: scale = 0.664062
main: preprocessed image (1024 x 1024)
sam_model_load: loading model from 'models/sam-vit-b/ggml-model-f16.bin' - please wait ...
sam_model_load: n_enc_state = 768
sam_model_load: n_enc_layer = 12
sam_model_load: n_enc_head = 12
sam_model_load: n_enc_out_chans = 256
sam_model_load: n_pt_embd = 4
sam_model_load: ftype = 1
sam_model_load: qntvr = 0
operator(): ggml ctx size = 202.32 MB
sam_model_load: ...................................... done
sam_model_load: model size = 185.05 MB / num tensors = 304
embd_img
dims: 64 64 256 1 f32
First & Last 10 elements:
-0.05117 -0.06408 -0.07154 -0.06991 -0.07212 -0.07690 -0.07508 -0.07281 -0.07383 -0.06779
0.01589 0.01775 0.02250 0.01675 0.01766 0.01661 0.01811 0.02051 0.02103 0.03382
sum: 12736.272313
Skipping mask 0 with iou 0.705935 below threshold 0.880000
Skipping mask 1 with iou 0.762136 below threshold 0.880000
Mask 2: iou = 0.947081, stability_score = 0.955437, bbox (371, 436), (144, 168)
main: load time = 51.28 ms
main: total time = 2047.49 ms
real 0m2.068s
user 0m16.343s
sys 0m0.214s
```
Input point is (414.375, 162.796875) (currently hardcoded)
Input image:

Output mask (mask_out_2.png in build folder):

## References
- [ggml](https://github.com/ggerganov/ggml)
- [SAM](https://segment-anything.com/)
- [SAM demo](https://segment-anything.com/demo)
|