|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import sys |
|
import json |
|
import struct |
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
|
|
def bytes_to_unicode(): |
|
""" |
|
Returns list of utf-8 byte and a corresponding list of unicode strings. |
|
The reversible bpe codes work on unicode strings. |
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. |
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. |
|
This is a signficant percentage of your normal, say, 32K bpe vocab. |
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. |
|
And avoids mapping to whitespace/control characters the bpe code barfs on. |
|
""" |
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2**8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2**8+n) |
|
n += 1 |
|
cs = [chr(n) for n in cs] |
|
return dict(zip(bs, cs)) |
|
|
|
|
|
def convert_to_ftype(data, ftype): |
|
|
|
if ftype == 1: |
|
return data.astype(np.float16) |
|
|
|
assert False, "Invalid ftype: " + str(ftype) |
|
|
|
if len(sys.argv) < 3: |
|
print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n") |
|
print(" ftype == 0 -> float32") |
|
print(" ftype == 1 -> float16") |
|
sys.exit(1) |
|
|
|
|
|
dir_model = sys.argv[1] |
|
fname_out = sys.argv[1] + "/ggml-model.bin" |
|
|
|
with open(dir_model + "/encoder.json", "r", encoding="utf-8") as f: |
|
encoder = json.load(f) |
|
|
|
with open(dir_model + "/hparams.json", "r", encoding="utf-8") as f: |
|
hparams = json.load(f) |
|
|
|
|
|
|
|
|
|
|
|
|
|
ftype_str = ["f32", "f16"] |
|
|
|
ftype = 1 |
|
if len(sys.argv) > 2: |
|
ftype = int(sys.argv[2]) |
|
if ftype < 0 or ftype > 1: |
|
print("Invalid ftype: " + str(ftype)) |
|
sys.exit(1) |
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" |
|
|
|
list_vars = tf.train.list_variables(dir_model) |
|
|
|
fout = open(fname_out, "wb") |
|
|
|
fout.write(struct.pack("i", 0x67676d6c)) |
|
fout.write(struct.pack("i", hparams["n_vocab"])) |
|
fout.write(struct.pack("i", hparams["n_ctx"])) |
|
fout.write(struct.pack("i", hparams["n_embd"])) |
|
fout.write(struct.pack("i", hparams["n_head"])) |
|
fout.write(struct.pack("i", hparams["n_layer"])) |
|
fout.write(struct.pack("i", ftype)) |
|
|
|
byte_encoder = bytes_to_unicode() |
|
byte_decoder = {v:k for k, v in byte_encoder.items()} |
|
|
|
fout.write(struct.pack("i", len(encoder))) |
|
|
|
for key in encoder: |
|
text = bytearray([byte_decoder[c] for c in key]) |
|
fout.write(struct.pack("i", len(text))) |
|
fout.write(text) |
|
|
|
for name, shape in list_vars: |
|
print("Processing variable: " + name + " with shape: ", shape) |
|
|
|
data = tf.train.load_variable(dir_model, name).squeeze() |
|
n_dims = len(data.shape); |
|
|
|
|
|
|
|
|
|
|
|
|
|
if name[-14:] == "/attn/c_attn/w" or \ |
|
name[-14:] == "/attn/c_proj/w" or \ |
|
name[-11:] == "/mlp/c_fc/w" or \ |
|
name[-13:] == "/mlp/c_proj/w": |
|
print(" Transposing") |
|
data = data.transpose() |
|
|
|
dshape = data.shape |
|
|
|
ftype_cur = 0 |
|
if ftype != 0: |
|
|
|
|
|
|
|
|
|
|
|
|
|
if name == "model/wte" or name[-2:] == "/w": |
|
print(" Converting to " + ftype_str[ftype]) |
|
data = convert_to_ftype(data, ftype) |
|
ftype_cur = ftype |
|
else: |
|
print(" Converting to float32") |
|
data = data.astype(np.float32) |
|
ftype_cur = 0 |
|
|
|
|
|
str = name.encode('utf-8') |
|
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) |
|
for i in range(n_dims): |
|
fout.write(struct.pack("i", dshape[n_dims - 1 - i])) |
|
fout.write(str); |
|
|
|
|
|
data.tofile(fout) |
|
|
|
fout.close() |
|
|
|
print("Done. Output file: " + fname_out) |
|
print("") |
|
|