|
#include "ggml/ggml.h" |
|
|
|
#include "common.h" |
|
|
|
#include <cmath> |
|
#include <cstdio> |
|
#include <cstring> |
|
#include <ctime> |
|
#include <fstream> |
|
#include <string> |
|
#include <vector> |
|
#include <algorithm> |
|
|
|
#if defined(_MSC_VER) |
|
#pragma warning(disable: 4244 4267) |
|
#endif |
|
|
|
struct mnist_model { |
|
struct ggml_tensor * conv2d_1_kernel; |
|
struct ggml_tensor * conv2d_1_bias; |
|
struct ggml_tensor * conv2d_2_kernel; |
|
struct ggml_tensor * conv2d_2_bias; |
|
struct ggml_tensor * dense_weight; |
|
struct ggml_tensor * dense_bias; |
|
struct ggml_context * ctx; |
|
}; |
|
|
|
bool mnist_model_load(const std::string & fname, mnist_model & model) { |
|
struct gguf_init_params params = { |
|
false, |
|
&model.ctx, |
|
}; |
|
gguf_context * ctx = gguf_init_from_file(fname.c_str(), params); |
|
if (!ctx) { |
|
fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__); |
|
return false; |
|
} |
|
model.conv2d_1_kernel = ggml_get_tensor(model.ctx, "kernel1"); |
|
model.conv2d_1_bias = ggml_get_tensor(model.ctx, "bias1"); |
|
model.conv2d_2_kernel = ggml_get_tensor(model.ctx, "kernel2"); |
|
model.conv2d_2_bias = ggml_get_tensor(model.ctx, "bias2"); |
|
model.dense_weight = ggml_get_tensor(model.ctx, "dense_w"); |
|
model.dense_bias = ggml_get_tensor(model.ctx, "dense_b"); |
|
return true; |
|
} |
|
|
|
int mnist_eval( |
|
const mnist_model & model, |
|
const int n_threads, |
|
std::vector<float> digit, |
|
const char * fname_cgraph |
|
) |
|
{ |
|
static size_t buf_size = 100000 * sizeof(float) * 4; |
|
static void * buf = malloc(buf_size); |
|
|
|
struct ggml_init_params params = { |
|
buf_size, |
|
buf, |
|
false, |
|
}; |
|
|
|
struct ggml_context * ctx0 = ggml_init(params); |
|
struct ggml_cgraph gf = {}; |
|
|
|
struct ggml_tensor * input = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, 28, 28, 1, 1); |
|
memcpy(input->data, digit.data(), ggml_nbytes(input)); |
|
ggml_set_name(input, "input"); |
|
ggml_tensor * cur = ggml_conv_2d(ctx0, model.conv2d_1_kernel, input, 1, 1, 0, 0, 1, 1); |
|
cur = ggml_add(ctx0, cur, model.conv2d_1_bias); |
|
cur = ggml_relu(ctx0, cur); |
|
|
|
cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0); |
|
|
|
cur = ggml_conv_2d(ctx0, model.conv2d_2_kernel, cur, 1, 1, 0, 0, 1, 1); |
|
cur = ggml_add(ctx0, cur, model.conv2d_2_bias); |
|
cur = ggml_relu(ctx0, cur); |
|
|
|
cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0); |
|
|
|
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 2, 0, 3)); |
|
|
|
cur = ggml_reshape_2d(ctx0, cur, 1600, 1); |
|
|
|
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.dense_weight, cur), model.dense_bias); |
|
ggml_tensor * probs = ggml_soft_max(ctx0, cur); |
|
ggml_set_name(probs, "probs"); |
|
|
|
ggml_build_forward_expand(&gf, probs); |
|
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); |
|
|
|
|
|
ggml_graph_dump_dot(&gf, NULL, "mnist-cnn.dot"); |
|
|
|
if (fname_cgraph) { |
|
|
|
|
|
ggml_graph_export(&gf, fname_cgraph); |
|
|
|
fprintf(stderr, "%s: exported compute graph to '%s'\n", __func__, fname_cgraph); |
|
} |
|
|
|
const float * probs_data = ggml_get_data_f32(probs); |
|
const int prediction = std::max_element(probs_data, probs_data + 10) - probs_data; |
|
ggml_free(ctx0); |
|
return prediction; |
|
} |
|
|
|
int main(int argc, char ** argv) { |
|
srand(time(NULL)); |
|
ggml_time_init(); |
|
|
|
if (argc != 3) { |
|
fprintf(stderr, "Usage: %s models/mnist/mnist-cnn.gguf models/mnist/t10k-images.idx3-ubyte\n", argv[0]); |
|
exit(0); |
|
} |
|
|
|
uint8_t buf[784]; |
|
mnist_model model; |
|
std::vector<float> digit; |
|
|
|
|
|
{ |
|
const int64_t t_start_us = ggml_time_us(); |
|
|
|
if (!mnist_model_load(argv[1], model)) { |
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, argv[1]); |
|
return 1; |
|
} |
|
|
|
const int64_t t_load_us = ggml_time_us() - t_start_us; |
|
|
|
fprintf(stdout, "%s: loaded model in %8.2f ms\n", __func__, t_load_us / 1000.0f); |
|
} |
|
|
|
|
|
{ |
|
std::ifstream fin(argv[2], std::ios::binary); |
|
if (!fin) { |
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, argv[2]); |
|
return 1; |
|
} |
|
|
|
|
|
fin.seekg(16 + 784 * (rand() % 10000)); |
|
fin.read((char *) &buf, sizeof(buf)); |
|
} |
|
|
|
|
|
{ |
|
digit.resize(sizeof(buf)); |
|
|
|
for (int row = 0; row < 28; row++) { |
|
for (int col = 0; col < 28; col++) { |
|
fprintf(stderr, "%c ", (float)buf[row*28 + col] > 230 ? '*' : '_'); |
|
digit[row*28 + col] = ((float)buf[row*28 + col] / 255.0f); |
|
} |
|
|
|
fprintf(stderr, "\n"); |
|
} |
|
|
|
fprintf(stderr, "\n"); |
|
} |
|
|
|
const int prediction = mnist_eval(model, 1, digit, nullptr); |
|
fprintf(stdout, "%s: predicted digit is %d\n", __func__, prediction); |
|
ggml_free(model.ctx); |
|
return 0; |
|
} |
|
|