svjack's picture
Upload folder using huggingface_hub
13d3ba0
raw
history blame
21.8 kB
#import "main-mtl.h"
#import "ggml/ggml.h"
#import <Foundation/Foundation.h>
#import <Metal/Metal.h>
#import <MetalPerformanceShaders/MetalPerformanceShaders.h>
// TODO: couldn't get this to work
//#define GGML_MTL_HEAP
struct ggml_mtl_context {
struct ggml_context * ctx_data;
struct ggml_context * ctx_eval;
struct ggml_context * ctx_work;
id<MTLDevice> device;
id<MTLCommandQueue> queue;
id<MTLLibrary> library;
#ifdef GGML_MTL_HEAP
id<MTLHeap> heap_data;
id<MTLHeap> heap_eval;
#else
id<MTLBuffer> buffer_data;
id<MTLBuffer> buffer_eval;
#endif
id<MTLBuffer> out;
// custom kernels
id<MTLFunction> function_add;
id<MTLComputePipelineState> pipeline_add;
id<MTLFunction> function_relu;
id<MTLComputePipelineState> pipeline_relu;
id<MTLFunction> function_soft_max;
id<MTLComputePipelineState> pipeline_soft_max;
};
// MSL code
NSString * const msl_library_mnist = @"\
#include <metal_stdlib> \n\
using namespace metal; \n\
\n\
#define MAX(x, y) ((x) > (y) ? (x) : (y)) \n\
\n\
constant int k_digits [[function_constant(0)]]; \n\
\n\
kernel void kernel_add( \n\
device const float * src0, \n\
device const float * src1, \n\
device float * dst, \n\
uint gid[[thread_position_in_grid]]) { \n\
dst[gid] = src0[gid] + src1[gid]; \n\
} \n\
\n\
kernel void kernel_relu( \n\
device const float * src, \n\
device float * dst, \n\
uint gid[[thread_position_in_grid]]) { \n\
dst[gid] = max(0.0f, src[gid]); \n\
} \n\
\n\
kernel void kernel_soft_max( \n\
device const float * src, \n\
device float * dst, \n\
uint gid[[thread_position_in_grid]]) { \n\
float max = 0.0f; \n\
for (int i = 0; i < k_digits; i++) { \n\
max = MAX(max, src[i]); \n\
} \n\
float sum = 0.0f; \n\
for (int i = 0; i < k_digits; i++) { \n\
dst[i] = exp(src[i] - max); \n\
sum += dst[i]; \n\
} \n\
for (int i = 0; i < k_digits; i++) { \n\
dst[i] /= sum; \n\
} \n\
} \n\
";
struct ggml_mtl_context * mnist_mtl_init(
struct ggml_context * ctx_data,
struct ggml_context * ctx_eval,
struct ggml_context * ctx_work,
struct ggml_cgraph * gf) {
fprintf(stderr, "%s: allocating\n", __func__);
struct ggml_mtl_context * ctx = malloc(sizeof(struct ggml_mtl_context));
ctx->ctx_data = ctx_data;
ctx->ctx_eval = ctx_eval;
ctx->ctx_work = ctx_work;
ctx->device = MTLCreateSystemDefaultDevice();
ctx->queue = [ctx->device newCommandQueue];
// determine if we can use MPS
if (MPSSupportsMTLDevice(ctx->device)) {
fprintf(stderr, "%s: using MPS\n", __func__);
} else {
fprintf(stderr, "%s: not using MPS\n", __func__);
GGML_ASSERT(false && "MPS not supported");
}
// compile from source string and show compile log
{
NSError * error = nil;
ctx->library = [ctx->device newLibraryWithSource:msl_library_mnist options:nil error:&error];
if (error) {
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
exit(1);
}
}
// load kernels
{
const int k_digits = ggml_graph_get_tensor(gf, "probs")->ne[0];
MTLFunctionConstantValues * constants = [MTLFunctionConstantValues new];
[constants setConstantValue:&k_digits type:MTLDataTypeInt withName:@"k_digits"];
ctx->function_add = [ctx->library newFunctionWithName:@"kernel_add"];
ctx->pipeline_add = [ctx->device newComputePipelineStateWithFunction:ctx->function_add error:nil];
fprintf(stderr, "%s: loaded kernel_add: %p\n", __func__, (void *) ctx->pipeline_add);
ctx->function_relu = [ctx->library newFunctionWithName:@"kernel_relu"];
ctx->pipeline_relu = [ctx->device newComputePipelineStateWithFunction:ctx->function_relu error:nil];
fprintf(stderr, "%s: loaded kernel_relu: %p\n", __func__, (void *) ctx->pipeline_relu);
ctx->function_soft_max = [ctx->library newFunctionWithName:@"kernel_soft_max" constantValues:constants error:nil];
ctx->pipeline_soft_max = [ctx->device newComputePipelineStateWithFunction:ctx->function_soft_max error:nil];
fprintf(stderr, "%s: loaded kernel_soft_max: %p\n", __func__, (void *) ctx->pipeline_soft_max);
}
#ifdef GGML_MTL_HEAP
// MTLHeap approach
// pin ctx_data memory to GPU
// use MTLStorageModeShared to allow us to initialize the weights from the CPU
// TODO: how to use MTLStorageModeManaged?
// TODO: see if we can avoid this copy somehow
{
const void * mem_buffer = ggml_get_mem_buffer(ctx_data);
const size_t mem_size = ggml_get_mem_size(ctx_data);
MTLHeapDescriptor * heap_desc = [MTLHeapDescriptor new];
heap_desc.storageMode = MTLStorageModeShared;
heap_desc.size = mem_size;
printf("heap_desc.size = %zu\n", mem_size);
ctx->heap_data = [ctx->device newHeapWithDescriptor:heap_desc];
[ctx->heap_data setPurgeableState:MTLPurgeableStateNonVolatile]; // TODO: is this needed?
ctx->heap_data.label = @"heap_data";
printf("ctx->heap_data.size = %zu\n", [ctx->heap_data size]);
id<MTLBuffer> buffer = [ctx->heap_data newBufferWithLength:mem_size options:MTLResourceStorageModeShared];
if (!buffer) {
fprintf(stderr, "%s: error: failed to allocate buffer\n", __func__);
exit(1);
}
// copy data from CPU to GPU
memcpy([buffer contents], mem_buffer, mem_size);
fprintf(stderr, "%s: allocated data heap, size = %zu\n", __func__, mem_size);
}
// pin ctx_eval memory to GPU
// this heap will be used for the intermediate results of the evaluation
{
const size_t mem_size = ggml_get_mem_size(ctx_eval);
MTLHeapDescriptor * heap_desc = [MTLHeapDescriptor new];
heap_desc.storageMode = MTLStorageModePrivate; // GPU only
heap_desc.size = mem_size;
ctx->heap_eval = [ctx->device newHeapWithDescriptor:heap_desc];
[ctx->heap_eval setPurgeableState:MTLPurgeableStateNonVolatile]; // TODO: is this needed?
fprintf(stderr, "%s: allocated eval heap, size = %zu\n", __func__, mem_size);
}
#else
// MTLBuffer approach
// pin ctx_data memory to GPU
// use MTLStorageModeShared to allow us to initialize the weights from the CPU
// TODO: how to use MTLStorageModeManaged?
// TODO: see if we can avoid this copy somehow
{
const void * mem_buffer = ggml_get_mem_buffer(ctx_data);
const size_t mem_size = ggml_get_mem_size(ctx_data);
ctx->buffer_data = [ctx->device newBufferWithBytes:mem_buffer length:mem_size options:MTLResourceStorageModeShared];
fprintf(stderr, "%s: allocated data buffer, size = %zu\n", __func__, mem_size);
}
// pin ctx_eval memory to GPU
// this buffer will be used for the intermediate results of the evaluation
{
const size_t mem_size = ggml_get_mem_size(ctx_eval);
ctx->buffer_eval = [ctx->device newBufferWithLength:mem_size options:MTLResourceStorageModePrivate];
fprintf(stderr, "%s: allocated eval buffer, size = %zu\n", __func__, mem_size);
}
#endif
// allocate buffer for result extraction
{
const size_t mem_size = ggml_nbytes(gf->nodes[gf->n_nodes - 1]);
ctx->out = [ctx->device newBufferWithLength:mem_size options:MTLResourceStorageModeShared];
fprintf(stderr, "%s: allocated out buffer, size = %zu\n", __func__, mem_size);
}
return ctx;
}
void mnist_mtl_free(struct ggml_mtl_context * ctx) {
fprintf(stderr, "%s: deallocating\n", __func__);
free(ctx);
}
#ifdef GGML_MTL_HEAP
// make a view of the respective MTL heap
id<MTLBuffer> mnist_mtl_get_buffer_on_heap(struct ggml_mtl_context * ctx, struct ggml_tensor * t) {
const int64_t offs_data = (int64_t) t->data - (int64_t) ggml_get_mem_buffer(ctx->ctx_data);
const int64_t offs_eval = (int64_t) t->data - (int64_t) ggml_get_mem_buffer(ctx->ctx_eval);
const bool is_data = (offs_eval < 0) || (offs_data >= 0 && offs_data < offs_eval);
const size_t t_size = ggml_nbytes(t);
const size_t t_offs = is_data ? offs_data : offs_eval;
id<MTLBuffer> result;
if (is_data) {
fprintf(stderr, "%s: data tensor '%16s', offs = %8ld, size = %8ld\n", __func__, t->name, t_offs, t_size);
result = [ctx->heap_data newBufferWithLength:t_size options:MTLResourceStorageModeShared offset:t_offs];
} else {
fprintf(stderr, "%s: eval tensor '%16s', offs = %8ld, size = %8ld\n", __func__, t->name, t_offs, t_size);
result = [ctx->heap_eval newBufferWithLength:t_size options:MTLResourceStorageModePrivate offset:t_offs];
}
if (result == nil) {
fprintf(stderr, "%s: error: buffer is nil\n", __func__);
GGML_ASSERT(false);
}
return result;
}
#else
// get data / eval buffer + offset
id<MTLBuffer> mnist_mtl_get_buffer(struct ggml_mtl_context * ctx, struct ggml_tensor * t, size_t * offs) {
const int64_t offs_data = (int64_t) t->data - (int64_t) ggml_get_mem_buffer(ctx->ctx_data);
const int64_t offs_eval = (int64_t) t->data - (int64_t) ggml_get_mem_buffer(ctx->ctx_eval);
const bool is_data = (offs_eval < 0) || (offs_data >= 0 && offs_data < offs_eval);
const size_t t_size = ggml_nbytes(t);
const size_t t_offs = is_data ? offs_data : offs_eval;
id<MTLBuffer> result;
if (is_data) {
fprintf(stderr, "%s: data tensor '%16s', offs = %8ld, size = %8ld\n", __func__, t->name, t_offs, t_size);
result = ctx->buffer_data;
} else {
fprintf(stderr, "%s: eval tensor '%16s', offs = %8ld, size = %8ld\n", __func__, t->name, t_offs, t_size);
result = ctx->buffer_eval;
}
if (result == nil) {
fprintf(stderr, "%s: error: buffer is nil\n", __func__);
GGML_ASSERT(false);
}
if (offs != nil) {
*offs = t_offs;
}
return result;
}
#endif
int mnist_mtl_eval(
struct ggml_mtl_context * ctx,
struct ggml_cgraph * gf) {
fprintf(stderr, "%s: evaluating\n", __func__);
id<MTLCommandBuffer> command_buffer = [ctx->queue commandBuffer];
id<MTLComputeCommandEncoder> encoder = nil;
size_t offs_src0;
size_t offs_src1;
size_t offs_dst;
// copy the input data to the GPU
{
struct ggml_tensor * inp = ggml_graph_get_tensor(gf, "input");
id<MTLBuffer> id_dst = mnist_mtl_get_buffer(ctx, inp, &offs_src0);
memcpy((char *) id_dst.contents + offs_src0, inp->data, ggml_nbytes(inp));
}
for (int i = 0; i < gf->n_nodes; ++i) {
fprintf(stderr, "%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
switch (gf->nodes[i]->op) {
case GGML_OP_ADD:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
}
id<MTLBuffer> id_src0 = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[0], &offs_src0);
id<MTLBuffer> id_src1 = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[1], &offs_src1);
id<MTLBuffer> id_dst = mnist_mtl_get_buffer(ctx, gf->nodes[i], &offs_dst);
[encoder setComputePipelineState:ctx->pipeline_add];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
const int64_t n = ggml_nelements(gf->nodes[i]);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(gf->nodes[i])) {
case GGML_UNARY_OP_RELU:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
}
id<MTLBuffer> id_src = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[0], &offs_src0);
id<MTLBuffer> id_dst = mnist_mtl_get_buffer(ctx, gf->nodes[i], &offs_dst);
[encoder setComputePipelineState:ctx->pipeline_relu];
[encoder setBuffer:id_src offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(gf->nodes[i]);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
default:
{
fprintf(stderr, "%s: node %3d, op = %8s, unary op %d not implemented\n", __func__, i, ggml_op_name(gf->nodes[i]->op), (int) ggml_get_unary_op(gf->nodes[i]));
GGML_ASSERT(false);
return -1;
}
break;
} break;
case GGML_OP_SOFT_MAX:
{
#if 0
// NOTE: MPSMatrixSoftMax is not working properly, probably there is a bug
if (encoder != nil) {
[encoder endEncoding];
encoder = nil;
}
// use MPSMatrixSoftMax
id<MTLBuffer> id_src = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src0, &offs_src0);
id<MTLBuffer> id_dst = mnist_mtl_get_buffer(ctx, gf->nodes[i], &offs_dst);
MPSMatrixDescriptor * desc = [MPSMatrixDescriptor
matrixDescriptorWithRows:1 columns:gf->nodes[i]->ne[0] rowBytes:gf->nodes[i]->nb[1] dataType:MPSDataTypeFloat32];
MPSMatrix * mat_src = [[MPSMatrix alloc] initWithBuffer:id_src offset:offs_src0 descriptor:desc];
MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst descriptor:desc];
MPSMatrixSoftMax * softmax = [[MPSMatrixSoftMax alloc] initWithDevice:ctx->device];
[softmax encodeToCommandBuffer:command_buffer inputMatrix:mat_src resultMatrix:mat_dst];
#else
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
}
id<MTLBuffer> id_src = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[0], &offs_src0);
id<MTLBuffer> id_dst = mnist_mtl_get_buffer(ctx, gf->nodes[i], &offs_dst);
[encoder setComputePipelineState:ctx->pipeline_soft_max];
[encoder setBuffer:id_src offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
#endif
} break;
case GGML_OP_MUL_MAT:
{
if (encoder != nil) {
[encoder endEncoding];
encoder = nil;
}
// use MPSMatrixMultiplication
id<MTLBuffer> id_src0 = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[0], &offs_src0);
id<MTLBuffer> id_src1 = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[1], &offs_src1);
id<MTLBuffer> id_dst = mnist_mtl_get_buffer(ctx, gf->nodes[i], &offs_dst);
const int64_t ncols0 = gf->nodes[i]->src[0]->ne[0];
const int64_t nrows0 = gf->nodes[i]->src[0]->ne[1];
const int64_t ncols1 = gf->nodes[i]->src[1]->ne[0];
const int64_t nrows1 = gf->nodes[i]->src[1]->ne[1];
const int64_t ncols2 = gf->nodes[i]->ne[0];
const int64_t nrows2 = gf->nodes[i]->ne[1];
GGML_ASSERT(ncols0 == ncols1);
MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor
matrixDescriptorWithRows:nrows0 columns:ncols0 rowBytes:gf->nodes[i]->src[0]->nb[1] dataType:MPSDataTypeFloat32];
MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor
matrixDescriptorWithRows:nrows1 columns:ncols1 rowBytes:gf->nodes[i]->src[1]->nb[1] dataType:MPSDataTypeFloat32];
MPSMatrixDescriptor * desc2 = [MPSMatrixDescriptor
matrixDescriptorWithRows:nrows2 columns:ncols2 rowBytes:gf->nodes[i]->nb[1] dataType:MPSDataTypeFloat32];
MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0 descriptor:desc0];
MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1 descriptor:desc1];
MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst descriptor:desc2];
MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc] initWithDevice:ctx->device
transposeLeft:false transposeRight:true resultRows:nrows1 resultColumns:nrows0 interiorColumns:ncols0 alpha:1.0 beta:0.0];
[mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst];
} break;
default:
{
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
GGML_ASSERT(false);
return -1;
}
}
}
// extract results from the GPU
{
if (encoder != nil) {
[encoder endEncoding];
encoder = nil;
}
struct ggml_tensor * out = gf->nodes[gf->n_nodes - 1];
id<MTLBuffer> id_src = mnist_mtl_get_buffer(ctx, out, &offs_src0);
id<MTLBuffer> id_dst = ctx->out;
id<MTLBlitCommandEncoder> encoder_blit = [command_buffer blitCommandEncoder];
[encoder_blit copyFromBuffer:id_src sourceOffset:offs_src0 toBuffer:id_dst destinationOffset:0 size:ggml_nbytes(out)];
[encoder_blit endEncoding];
}
[command_buffer commit];
[command_buffer waitUntilCompleted];
{
const double time_elapsed = [command_buffer GPUEndTime] - [command_buffer GPUStartTime];
fprintf(stderr, "%s: time elapsed = %f\n", __func__, time_elapsed);
}
// select the most probable digit
int result = -1;
{
const float * probs = ctx->out.contents;
float prob = probs[0];
for (int i = 0; i < 10; ++i) {
fprintf(stderr, "%s: probs[%2d] = %f\n", __func__, i, probs[i]);
if (probs[i] > prob) {
result = i;
prob = probs[i];
}
}
}
return result;
}