|
#include "ggml/ggml.h" |
|
|
|
#include "common.h" |
|
#include "common-ggml.h" |
|
|
|
#include <cassert> |
|
#include <cmath> |
|
#include <cstdio> |
|
#include <cstring> |
|
#include <fstream> |
|
#include <map> |
|
#include <string> |
|
#include <vector> |
|
|
|
#if !defined(_WIN32) |
|
|
|
#include <sys/types.h> |
|
#include <sys/mman.h> |
|
#include <unistd.h> |
|
#include <fcntl.h> |
|
#else |
|
#define NOMINMAX |
|
#include <Windows.h> |
|
#endif |
|
|
|
#ifdef GGML_USE_CUBLAS |
|
#include "ggml-cuda.h" |
|
#endif |
|
|
|
#ifdef GGML_USE_CLBLAST |
|
#include "ggml-opencl.h" |
|
#endif |
|
|
|
|
|
|
|
struct starcoder_hparams { |
|
int32_t n_vocab = 49280; |
|
int32_t n_ctx = 2048; |
|
int32_t n_embd = 2048; |
|
int32_t n_head = 16; |
|
int32_t n_layer = 24; |
|
int32_t ftype = 1; |
|
float eps = 1e-5f; |
|
}; |
|
|
|
struct starcoder_layer { |
|
|
|
struct ggml_tensor * ln_1_g; |
|
struct ggml_tensor * ln_1_b; |
|
|
|
struct ggml_tensor * ln_2_g; |
|
struct ggml_tensor * ln_2_b; |
|
|
|
|
|
struct ggml_tensor * c_attn_attn_w; |
|
struct ggml_tensor * c_attn_attn_b; |
|
|
|
struct ggml_tensor * c_attn_proj_w; |
|
struct ggml_tensor * c_attn_proj_b; |
|
|
|
|
|
struct ggml_tensor * c_mlp_fc_w; |
|
struct ggml_tensor * c_mlp_fc_b; |
|
|
|
struct ggml_tensor * c_mlp_proj_w; |
|
struct ggml_tensor * c_mlp_proj_b; |
|
}; |
|
|
|
struct llama_buffer { |
|
uint8_t * addr = NULL; |
|
size_t size = 0; |
|
|
|
llama_buffer() = default; |
|
|
|
void resize(size_t len) { |
|
#ifdef GGML_USE_METAL |
|
free(addr); |
|
int result = posix_memalign((void **) &addr, getpagesize(), len); |
|
if (result == 0) { |
|
memset(addr, 0, len); |
|
} |
|
else { |
|
addr = NULL; |
|
} |
|
#else |
|
delete[] addr; |
|
addr = new uint8_t[len]; |
|
#endif |
|
size = len; |
|
} |
|
|
|
~llama_buffer() { |
|
#ifdef GGML_USE_METAL |
|
free(addr); |
|
#else |
|
delete[] addr; |
|
#endif |
|
addr = NULL; |
|
} |
|
|
|
|
|
llama_buffer(const llama_buffer&) = delete; |
|
llama_buffer(llama_buffer&&) = delete; |
|
llama_buffer& operator=(const llama_buffer&) = delete; |
|
llama_buffer& operator=(llama_buffer&&) = delete; |
|
}; |
|
|
|
|
|
struct kv_cache { |
|
struct ggml_tensor * k; |
|
struct ggml_tensor * v; |
|
|
|
struct ggml_context * ctx = NULL; |
|
|
|
|
|
llama_buffer buf; |
|
|
|
int n; |
|
}; |
|
|
|
struct starcoder_model { |
|
starcoder_hparams hparams; |
|
|
|
|
|
struct ggml_tensor * ln_f_g; |
|
struct ggml_tensor * ln_f_b; |
|
|
|
struct ggml_tensor * wte; |
|
struct ggml_tensor * wpe; |
|
struct ggml_tensor * lm_head; |
|
|
|
std::vector<starcoder_layer> layers; |
|
|
|
|
|
|
|
|
|
struct kv_cache cache; |
|
|
|
|
|
void * mm_addr = NULL; |
|
uint64_t mm_length = 0; |
|
|
|
|
|
struct ggml_context * ctx; |
|
std::map<std::string, struct ggml_tensor *> tensors; |
|
}; |
|
|
|
|
|
static void *mmap_file(const char *fname, uint64_t *mm_length) { |
|
#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES) |
|
HANDLE hFile = CreateFileA(fname, |
|
GENERIC_READ, |
|
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, |
|
NULL, |
|
OPEN_EXISTING, |
|
FILE_ATTRIBUTE_NORMAL | FILE_ATTRIBUTE_NOT_CONTENT_INDEXED, |
|
NULL); |
|
if (hFile == INVALID_HANDLE_VALUE) return 0; |
|
LARGE_INTEGER fileSize; |
|
fileSize.QuadPart = -1; |
|
GetFileSizeEx(hFile, &fileSize); |
|
int64_t length = fileSize.QuadPart; |
|
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL); |
|
CloseHandle(hFile); |
|
if (!hMapping) return 0; |
|
void *addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0); |
|
CloseHandle(hMapping); |
|
if (!addr) return 0; |
|
#else |
|
int fd = open(fname, O_RDONLY); |
|
if (fd == -1) return 0; |
|
int64_t length = lseek(fd, 0, SEEK_END); |
|
void *addr = mmap(NULL, length, PROT_READ, MAP_SHARED, fd, 0); |
|
close(fd); |
|
if (addr == MAP_FAILED) return 0; |
|
#endif |
|
*mm_length = length; |
|
return addr; |
|
} |
|
|
|
static void munmap_file(void * addr, size_t length) { |
|
#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES) |
|
UnmapViewOfFile(addr); |
|
#else |
|
munmap(addr, length); |
|
#endif |
|
} |
|
|
|
|
|
bool starcoder_model_load(const std::string & fname, starcoder_model & model, gpt_vocab & vocab, int32_t n_gpu_layers) { |
|
printf("%s: loading model from '%s'\n", __func__, fname.c_str()); |
|
|
|
auto fin = std::ifstream(fname, std::ios::binary); |
|
if (!fin) { |
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); |
|
return false; |
|
} |
|
|
|
std::vector<char> f_buf(1024*1024); |
|
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size()); |
|
|
|
|
|
|
|
{ |
|
uint32_t magic; |
|
fin.read((char *) &magic, sizeof(magic)); |
|
|
|
if (magic != 0x67676d6c) { |
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
{ |
|
auto & hparams = model.hparams; |
|
|
|
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); |
|
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); |
|
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); |
|
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); |
|
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); |
|
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype)); |
|
|
|
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; |
|
|
|
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); |
|
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); |
|
printf("%s: n_embd = %d\n", __func__, hparams.n_embd); |
|
printf("%s: n_head = %d\n", __func__, hparams.n_head); |
|
printf("%s: n_layer = %d\n", __func__, hparams.n_layer); |
|
printf("%s: ftype = %d\n", __func__, hparams.ftype); |
|
printf("%s: qntvr = %d\n", __func__, qntvr); |
|
|
|
hparams.ftype %= GGML_QNT_VERSION_FACTOR; |
|
} |
|
|
|
|
|
{ |
|
int32_t n_vocab = 0; |
|
fin.read((char *) &n_vocab, sizeof(n_vocab)); |
|
|
|
if (n_vocab != model.hparams.n_vocab) { |
|
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", |
|
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab); |
|
return false; |
|
} |
|
|
|
std::string word; |
|
std::vector<char> buf(128); |
|
|
|
for (int i = 0; i < n_vocab; i++) { |
|
uint32_t len; |
|
fin.read((char *) &len, sizeof(len)); |
|
|
|
buf.resize(len); |
|
fin.read((char *) buf.data(), len); |
|
word.assign(buf.data(), len); |
|
|
|
vocab.token_to_id[word] = i; |
|
vocab.id_to_token[i] = word; |
|
|
|
|
|
} |
|
|
|
|
|
for (std::string token : { |
|
"<|system|>", |
|
"<|user|>", |
|
"<|assistant|>", |
|
"<|end|>", |
|
}) { |
|
if (vocab.token_to_id.find(token) != vocab.token_to_id.end()) { |
|
vocab.add_special_token(token); |
|
} |
|
} |
|
} |
|
|
|
char *mm_addr = NULL; |
|
model.mm_addr = mmap_file(fname.c_str(), &model.mm_length); |
|
if (model.mm_addr == NULL) { |
|
fprintf(stderr, "%s: failed to mmap '%s'\n", __func__, fname.c_str()); |
|
return false; |
|
} |
|
mm_addr = (char *)model.mm_addr; |
|
fprintf(stderr, "%s: ggml map size = %6.2f MB\n", __func__, model.mm_length/(1024.0*1024.0)); |
|
|
|
|
|
|
|
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype)); |
|
if (wtype == GGML_TYPE_COUNT) { |
|
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", |
|
__func__, fname.c_str(), model.hparams.ftype); |
|
return false; |
|
} |
|
|
|
auto & ctx = model.ctx; |
|
|
|
size_t ctx_size = 0; |
|
|
|
{ |
|
const auto & hparams = model.hparams; |
|
|
|
const int n_layer = hparams.n_layer; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ctx_size += (6 + 12*n_layer)*512; |
|
|
|
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); |
|
} |
|
|
|
|
|
{ |
|
struct ggml_init_params params = { |
|
ctx_size, |
|
NULL, |
|
true, |
|
}; |
|
|
|
model.ctx = ggml_init(params); |
|
if (!model.ctx) { |
|
fprintf(stderr, "%s: ggml_init() failed\n", __func__); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
{ |
|
const auto & hparams = model.hparams; |
|
|
|
const int n_embd = hparams.n_embd; |
|
const int n_layer = hparams.n_layer; |
|
const int n_ctx = hparams.n_ctx; |
|
const int n_vocab = hparams.n_vocab; |
|
|
|
const int head_dim = n_embd / hparams.n_head; |
|
const int kv_heads = hparams.n_head; |
|
const int kv_dim = kv_heads * head_dim; |
|
|
|
model.layers.resize(n_layer); |
|
|
|
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
|
|
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); |
|
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx); |
|
model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); |
|
|
|
|
|
model.tensors["model/ln_f/g"] = model.ln_f_g; |
|
model.tensors["model/ln_f/b"] = model.ln_f_b; |
|
|
|
model.tensors["model/wte"] = model.wte; |
|
model.tensors["model/wpe"] = model.wpe; |
|
model.tensors["model/lm_head"] = model.lm_head; |
|
|
|
for (int i = 0; i < n_layer; ++i) { |
|
auto & layer = model.layers[i]; |
|
|
|
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
|
|
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
|
|
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd + 2*kv_dim); |
|
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd + 2*kv_dim); |
|
|
|
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); |
|
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
|
|
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd); |
|
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd); |
|
|
|
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd); |
|
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
|
|
|
|
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g; |
|
model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b; |
|
|
|
model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g; |
|
model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b; |
|
|
|
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w; |
|
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b; |
|
|
|
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w; |
|
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b; |
|
|
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w; |
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b; |
|
|
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w; |
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b; |
|
} |
|
} |
|
|
|
|
|
{ |
|
const auto & hparams = model.hparams; |
|
|
|
const int n_embd = hparams.n_embd; |
|
const int n_layer = hparams.n_layer; |
|
const int n_ctx = hparams.n_ctx; |
|
|
|
const int n_mem = n_layer*n_ctx; |
|
const int n_elements = n_embd*n_mem; |
|
|
|
model.cache.buf.resize(2u*n_elements*ggml_type_size(GGML_TYPE_F16) + 2u*1024*1024); |
|
|
|
struct ggml_init_params c_params; |
|
c_params.mem_size = model.cache.buf.size; |
|
c_params.mem_buffer = model.cache.buf.addr; |
|
c_params.no_alloc = false; |
|
|
|
model.cache.ctx = ggml_init(c_params); |
|
|
|
if (!model.cache.ctx) { |
|
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); |
|
return false; |
|
} |
|
|
|
model.cache.k = ggml_new_tensor_1d(model.cache.ctx, GGML_TYPE_F16, n_elements); |
|
model.cache.v = ggml_new_tensor_1d(model.cache.ctx, GGML_TYPE_F16, n_elements); |
|
|
|
const size_t memory_size = ggml_nbytes(model.cache.k) + ggml_nbytes(model.cache.v); |
|
|
|
printf("%s: kv_cache memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem); |
|
} |
|
|
|
|
|
{ |
|
size_t total_size = 0; |
|
|
|
bool has_lm_head = false; |
|
|
|
while (true) { |
|
int32_t n_dims; |
|
int32_t length; |
|
int32_t ttype; |
|
|
|
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); |
|
fin.read(reinterpret_cast<char *>(&length), sizeof(length)); |
|
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype)); |
|
|
|
if (fin.eof()) { |
|
break; |
|
} |
|
|
|
int32_t nelements = 1; |
|
int32_t ne[2] = { 1, 1 }; |
|
for (int i = 0; i < n_dims; ++i) { |
|
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); |
|
nelements *= ne[i]; |
|
} |
|
|
|
std::string name(length, 0); |
|
fin.read(&name[0], length); |
|
|
|
if (model.tensors.find(name.data()) == model.tensors.end()) { |
|
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); |
|
return false; |
|
} |
|
|
|
auto tensor = model.tensors[name.data()]; |
|
|
|
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { |
|
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n", |
|
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]); |
|
return false; |
|
} |
|
if (ggml_nelements(tensor) != nelements) { |
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file. got %d, expected %d\n", |
|
__func__, name.data(), (int) ggml_nelements(tensor), nelements); |
|
return false; |
|
} |
|
|
|
|
|
if (0) { |
|
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor)); |
|
} |
|
|
|
const size_t bpe = ggml_type_size(ggml_type(ttype)); |
|
|
|
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { |
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", |
|
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe); |
|
return false; |
|
} |
|
|
|
|
|
size_t offset = fin.tellg(); |
|
size_t tensor_data_size = ggml_nbytes(tensor); |
|
|
|
tensor->data = mm_addr + offset; |
|
fin.seekg(offset + tensor_data_size); |
|
total_size += tensor_data_size; |
|
|
|
|
|
if (name == "model/wte" && has_lm_head == false) { |
|
|
|
model.lm_head->data = tensor->data; |
|
} |
|
|
|
if (name == "model/lm_head") { |
|
has_lm_head = true; |
|
} |
|
} |
|
|
|
printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); |
|
} |
|
|
|
fin.close(); |
|
|
|
#ifdef GGML_USE_CUBLAS |
|
{ |
|
const auto & hparams = model.hparams; |
|
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); |
|
|
|
fprintf(stderr, "%s: [cublas] offloading %d layers to GPU\n", __func__, n_gpu); |
|
|
|
size_t vram_total = 0; |
|
|
|
for (int i = 0; i < n_gpu; ++i) { |
|
const auto & layer = model.layers[i]; |
|
|
|
layer.c_attn_attn_w->backend = GGML_BACKEND_GPU; |
|
ggml_cuda_transform_tensor((uint8_t *)layer.c_attn_attn_w->data, layer.c_attn_attn_w); vram_total += ggml_nbytes(layer.c_attn_attn_w); |
|
|
|
layer.c_attn_proj_w->backend = GGML_BACKEND_GPU; |
|
ggml_cuda_transform_tensor((uint8_t *)layer.c_attn_proj_w->data, layer.c_attn_proj_w); vram_total += ggml_nbytes(layer.c_attn_proj_w); |
|
|
|
layer.c_mlp_fc_w->backend = GGML_BACKEND_GPU; |
|
ggml_cuda_transform_tensor((uint8_t *)layer.c_mlp_fc_w->data, layer.c_mlp_fc_w); vram_total += ggml_nbytes(layer.c_mlp_fc_w); |
|
|
|
layer.c_mlp_proj_w->backend = GGML_BACKEND_GPU; |
|
ggml_cuda_transform_tensor((uint8_t *)layer.c_mlp_proj_w->data, layer.c_mlp_proj_w); vram_total += ggml_nbytes(layer.c_mlp_proj_w); |
|
} |
|
|
|
ggml_cuda_set_scratch_size(0); |
|
|
|
|
|
|
|
|
|
|
|
|
|
fprintf(stderr, "%s: [cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); |
|
} |
|
#elif defined(GGML_USE_CLBLAST) |
|
|
|
{ |
|
const auto & hparams = model.hparams; |
|
size_t vram_total = 0; |
|
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); |
|
fprintf(stderr, "%s: [opencl] offloading %d layers to GPU\n", __func__, n_gpu); |
|
for (int i = 0; i < n_gpu; ++i) { |
|
const auto & layer = model.layers[i]; |
|
layer.c_attn_attn_w->backend = GGML_BACKEND_GPU; |
|
layer.c_attn_proj_w->backend = GGML_BACKEND_GPU; |
|
layer.c_mlp_fc_w->backend = GGML_BACKEND_GPU; |
|
layer.c_mlp_proj_w->backend = GGML_BACKEND_GPU; |
|
ggml_cl_transform_tensor(layer.c_attn_attn_w->data,layer.c_attn_attn_w); vram_total += ggml_nbytes(layer.c_attn_attn_w); |
|
ggml_cl_transform_tensor(layer.c_attn_proj_w->data,layer.c_attn_proj_w); vram_total += ggml_nbytes(layer.c_attn_proj_w); |
|
ggml_cl_transform_tensor(layer.c_mlp_fc_w->data,layer.c_mlp_fc_w); vram_total += ggml_nbytes(layer.c_mlp_fc_w); |
|
ggml_cl_transform_tensor(layer.c_mlp_proj_w->data,layer.c_mlp_proj_w); vram_total += ggml_nbytes(layer.c_mlp_proj_w); |
|
} |
|
fprintf(stderr, "%s: [opencl] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); |
|
} |
|
#endif |
|
|
|
return true; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool starcoder_eval( |
|
const starcoder_model & model, |
|
const int n_threads, |
|
const int n_past, |
|
const std::vector<gpt_vocab::id> & embd_inp, |
|
std::vector<float> & embd_w, |
|
size_t & mem_per_token) { |
|
|
|
const int N = int(embd_inp.size()); |
|
|
|
const auto & hparams = model.hparams; |
|
|
|
auto & cache = model.cache; |
|
|
|
const int n_embd = hparams.n_embd; |
|
const int n_layer = hparams.n_layer; |
|
const int n_ctx = hparams.n_ctx; |
|
const int n_head = hparams.n_head; |
|
const int n_vocab = hparams.n_vocab; |
|
|
|
|
|
|
|
static size_t buf_size = 256u*1024*1024*2; |
|
static void * buf = malloc(buf_size); |
|
|
|
|
|
|
|
static size_t scratch0_size = 256u*1024*1024*2; |
|
static void * scratch0 = malloc(scratch0_size); |
|
|
|
static size_t scratch1_size = 256u*1024*1024*2; |
|
static void * scratch1 = malloc(scratch1_size); |
|
|
|
if (mem_per_token > 0 && mem_per_token*N > buf_size) { |
|
const size_t buf_size_new = size_t(1.1*(mem_per_token*N)); |
|
printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new); |
|
|
|
|
|
buf_size = buf_size_new; |
|
buf = realloc(buf, buf_size); |
|
if (buf == nullptr) { |
|
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); |
|
return false; |
|
} |
|
} |
|
|
|
struct ggml_init_params params = { |
|
buf_size, |
|
buf, |
|
false, |
|
}; |
|
|
|
struct ggml_context * ctx0 = ggml_init(params); |
|
struct ggml_cgraph gf = {}; |
|
|
|
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); |
|
|
|
|
|
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); |
|
|
|
struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); |
|
for (int i = 0; i < N; ++i) { |
|
((int32_t *) position->data)[i] = n_past + i; |
|
} |
|
|
|
|
|
struct ggml_tensor * inpL = |
|
ggml_add(ctx0, |
|
ggml_get_rows(ctx0, model.wte, embd), |
|
ggml_get_rows(ctx0, model.wpe, position)); |
|
|
|
for (int il = 0; il < n_layer; ++il) { |
|
struct ggml_tensor * cur; |
|
|
|
ggml_set_scratch(ctx0, { 0, scratch0_size, scratch0, }); |
|
|
|
|
|
{ |
|
|
|
cur = ggml_norm(ctx0, inpL, hparams.eps); |
|
|
|
|
|
|
|
cur = ggml_add(ctx0, |
|
ggml_mul(ctx0, |
|
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), |
|
cur), |
|
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{ |
|
cur = ggml_mul_mat(ctx0, |
|
model.layers[il].c_attn_attn_w, |
|
cur); |
|
|
|
cur = ggml_add(ctx0, |
|
ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur), |
|
cur); |
|
} |
|
|
|
|
|
{ |
|
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd); |
|
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd); |
|
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd); |
|
|
|
|
|
if (N >= 1) { |
|
struct ggml_tensor * k = ggml_view_1d(ctx0, cache.k, N*n_embd, (ggml_element_size(cache.k)*n_embd)*(il*n_ctx + n_past)); |
|
struct ggml_tensor * v = ggml_view_1d(ctx0, cache.v, N*n_embd, (ggml_element_size(cache.v)*n_embd)*(il*n_ctx + n_past)); |
|
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); |
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * Q = |
|
ggml_permute(ctx0, |
|
ggml_cpy(ctx0, |
|
Qcur, |
|
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)), |
|
0, 2, 1, 3); |
|
|
|
|
|
|
|
struct ggml_tensor * K = |
|
ggml_permute(ctx0, |
|
ggml_reshape_3d(ctx0, |
|
ggml_view_1d(ctx0, cache.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(cache.k)*n_embd), |
|
n_embd/n_head, n_head, n_past + N), |
|
0, 2, 1, 3); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); |
|
|
|
|
|
|
|
struct ggml_tensor * KQ_scaled = |
|
ggml_scale_inplace(ctx0, |
|
KQ, |
|
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)) |
|
); |
|
|
|
|
|
|
|
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); |
|
|
|
|
|
|
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); |
|
|
|
|
|
|
|
struct ggml_tensor * V_trans = |
|
ggml_cpy(ctx0, |
|
ggml_permute(ctx0, |
|
ggml_reshape_3d(ctx0, |
|
ggml_view_1d(ctx0, cache.v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(cache.v)*n_embd), |
|
n_embd/n_head, n_head, n_past + N), |
|
1, 2, 0, 3), |
|
ggml_new_tensor_3d(ctx0, cache.v->type, n_past + N, n_embd/n_head, n_head)); |
|
|
|
|
|
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); |
|
|
|
|
|
|
|
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); |
|
|
|
|
|
|
|
cur = ggml_cpy(ctx0, |
|
KQV_merged, |
|
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{ |
|
cur = ggml_mul_mat(ctx0, |
|
model.layers[il].c_attn_proj_w, |
|
cur); |
|
|
|
cur = ggml_add(ctx0, |
|
ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), |
|
cur); |
|
} |
|
|
|
|
|
cur = ggml_add(ctx0, cur, inpL); |
|
|
|
struct ggml_tensor * inpFF = cur; |
|
|
|
ggml_set_scratch(ctx0, { 0, scratch1_size, scratch1, }); |
|
|
|
|
|
{ |
|
|
|
{ |
|
cur = ggml_norm(ctx0, inpFF, hparams.eps); |
|
|
|
|
|
|
|
cur = ggml_add(ctx0, |
|
ggml_mul(ctx0, |
|
ggml_repeat(ctx0, model.layers[il].ln_2_g, cur), |
|
cur), |
|
ggml_repeat(ctx0, model.layers[il].ln_2_b, cur)); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cur = ggml_mul_mat(ctx0, |
|
model.layers[il].c_mlp_fc_w, |
|
cur); |
|
|
|
cur = ggml_add(ctx0, |
|
ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur), |
|
cur); |
|
|
|
|
|
|
|
cur = ggml_gelu(ctx0, cur); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cur = ggml_mul_mat(ctx0, |
|
model.layers[il].c_mlp_proj_w, |
|
cur); |
|
|
|
cur = ggml_add(ctx0, |
|
ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur), |
|
cur); |
|
} |
|
|
|
|
|
inpL = ggml_add(ctx0, cur, inpFF); |
|
} |
|
|
|
ggml_set_scratch(ctx0, { 0, scratch0_size, scratch0, }); |
|
|
|
|
|
{ |
|
|
|
inpL = ggml_norm(ctx0, inpL, hparams.eps); |
|
|
|
|
|
|
|
inpL = ggml_add(ctx0, |
|
ggml_mul(ctx0, |
|
ggml_repeat(ctx0, model.ln_f_g, inpL), |
|
inpL), |
|
ggml_repeat(ctx0, model.ln_f_b, inpL)); |
|
} |
|
|
|
ggml_set_scratch(ctx0, { 0, 0, nullptr, }); |
|
|
|
|
|
|
|
|
|
inpL = ggml_mul_mat(ctx0, model.lm_head, inpL); |
|
|
|
|
|
|
|
|
|
|
|
ggml_build_forward_expand(&gf, inpL); |
|
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
embd_w.resize(n_vocab); |
|
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); |
|
|
|
if (mem_per_token == 0) { |
|
mem_per_token = ggml_used_mem(ctx0)/N; |
|
} |
|
|
|
|
|
ggml_free(ctx0); |
|
|
|
return true; |
|
} |
|
|
|
|
|
int main(int argc, char ** argv) { |
|
ggml_time_init(); |
|
|
|
const int64_t t_main_start_us = ggml_time_us(); |
|
|
|
gpt_params params; |
|
params.model = "models/gpt-2-117M/ggml-model.bin"; |
|
|
|
if (gpt_params_parse(argc, argv, params) == false) { |
|
return 1; |
|
} |
|
|
|
if (params.seed < 0) { |
|
params.seed = int(time(NULL)); |
|
} |
|
|
|
printf("%s: seed = %d\n", __func__, params.seed); |
|
|
|
std::mt19937 rng(params.seed); |
|
if (params.prompt.empty()) { |
|
params.prompt = gpt_random_prompt(rng); |
|
} |
|
|
|
int64_t t_load_us = 0; |
|
|
|
gpt_vocab vocab; |
|
starcoder_model model; |
|
|
|
|
|
{ |
|
const int64_t t_start_us = ggml_time_us(); |
|
|
|
if (!starcoder_model_load(params.model, model, vocab, params.n_gpu_layers)) { |
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); |
|
return 1; |
|
} |
|
|
|
t_load_us = ggml_time_us() - t_start_us; |
|
|
|
test_gpt_tokenizer(vocab, params.token_test); |
|
} |
|
|
|
int n_past = 0; |
|
|
|
int64_t t_sample_us = 0; |
|
int64_t t_predict_us = 0; |
|
|
|
std::vector<float> logits; |
|
|
|
|
|
std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt); |
|
|
|
params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size()); |
|
|
|
printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str()); |
|
printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); |
|
for (size_t i = 0; i < embd_inp.size(); i++) { |
|
printf("%s: token[%zu] = %6d, %s\n", __func__, i, embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str()); |
|
} |
|
printf("\n\n"); |
|
|
|
|
|
gpt_vocab::id starchat_end_token = -1; |
|
{ |
|
const auto it = vocab.token_to_id.find("<|end|>"); |
|
if (it != vocab.token_to_id.end()) { |
|
starchat_end_token = it->second; |
|
} |
|
} |
|
|
|
|
|
|
|
std::vector<gpt_vocab::id> embd; |
|
|
|
|
|
size_t mem_per_token = 0; |
|
printf("Calling starcoder_eval\n"); |
|
starcoder_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); |
|
|
|
for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++) { |
|
|
|
if (embd.size() > 0) { |
|
const int64_t t_start_us = ggml_time_us(); |
|
|
|
if (!starcoder_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) { |
|
printf("Failed to predict\n"); |
|
return 1; |
|
} |
|
|
|
|
|
if (i > embd_inp.size()) { |
|
t_predict_us += ggml_time_us() - t_start_us; |
|
} |
|
} |
|
|
|
n_past += int(embd.size()); |
|
embd.clear(); |
|
|
|
if (i >= embd_inp.size()) { |
|
|
|
const int top_k = params.top_k; |
|
const float top_p = params.top_p; |
|
const float temp = params.temp; |
|
|
|
const int n_vocab = model.hparams.n_vocab; |
|
|
|
gpt_vocab::id id = 0; |
|
|
|
{ |
|
const int64_t t_start_sample_us = ggml_time_us(); |
|
|
|
id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng); |
|
|
|
t_sample_us += ggml_time_us() - t_start_sample_us; |
|
} |
|
|
|
|
|
embd.push_back(id); |
|
} else { |
|
|
|
for (size_t k = i; k < embd_inp.size(); k++) { |
|
embd.push_back(embd_inp[k]); |
|
if (int32_t(embd.size()) >= params.n_batch) { |
|
break; |
|
} |
|
} |
|
i += int(embd.size()) - 1; |
|
} |
|
|
|
|
|
for (auto id : embd) { |
|
printf("%s", vocab.id_to_token[id].c_str()); |
|
} |
|
fflush(stdout); |
|
|
|
|
|
if (model.hparams.n_layer <= 30 && embd.back() == 49152) { |
|
break; |
|
} |
|
|
|
else if (embd.back() == 0) { |
|
break; |
|
} |
|
|
|
else if (embd.back() == starchat_end_token) { |
|
|
|
} |
|
} |
|
|
|
|
|
{ |
|
const int64_t t_main_end_us = ggml_time_us(); |
|
|
|
printf("\n\n"); |
|
printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token); |
|
printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f); |
|
printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); |
|
|
|
printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/(n_past - embd_inp.size())); |
|
|
|
|
|
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); |
|
} |
|
|
|
ggml_free(model.ctx); |
|
|
|
if (model.mm_addr) { |
|
munmap_file(model.mm_addr, model.mm_length); |
|
} |
|
|
|
return 0; |
|
} |
|
|