svjack's picture
Upload folder using huggingface_hub
13d3ba0
raw
history blame
3.29 kB
import os
from transformers import AutoTokenizer
os.environ['TOKENIZERS_PARALLELISM'] = "false"
list_repo_hf = ["databricks/dolly-v2-3b", # dolly-v2 (3b, 7b, 12b models share the same tokenizer)
"gpt2", # gpt-2 (gpt2-xl, gpt2-large share the same tokenizer)
"uer/gpt2-chinese-cluecorpussmall", # gpt-2-chinese
"EleutherAI/gpt-j-6b", # gpt-j
"EleutherAI/gpt-neox-20b", # gpt-neox
"EleutherAI/polyglot-ko-1.3b", # gpt-neox (polyglot-ko 5.8b and 12.8b share the same tokenizer")
"rinna/japanese-gpt-neox-3.6b", # gpt-neox
# mpt-7b (uses gpt-neox-20b tokenizer)
"replit/replit-code-v1-3b", # replit
"bigcode/starcoder", # starcoder (huggingface-cli login required)
"openai/whisper-tiny" # whisper (base, large, large-v2 share the same tokenizer)
]
repo2ggml = {"databricks/dolly-v2-3b" : "dolly-v2",
"gpt2" : "gpt-2",
"uer/gpt2-chinese-cluecorpussmall" : "gpt-2-chinese",
"EleutherAI/gpt-j-6b" : "gpt-j",
"EleutherAI/gpt-neox-20b" : "gpt-neox",
"EleutherAI/polyglot-ko-1.3b" : "polyglot-ko",
"rinna/japanese-gpt-neox-3.6b" : "gpt-neox-japanese",
"replit/replit-code-v1-3b" : "replit",
"bigcode/starcoder" : "starcoder",
"openai/whisper-tiny" : "whisper"}
repo2language = {"databricks/dolly-v2-3b" : "english",
"gpt2" : "english",
"uer/gpt2-chinese-cluecorpussmall" : "chinese",
"EleutherAI/gpt-j-6b" : "english",
"EleutherAI/gpt-neox-20b" : "english",
"EleutherAI/polyglot-ko-1.3b" : "korean",
"rinna/japanese-gpt-neox-3.6b" : "japanese",
"replit/replit-code-v1-3b" : "english",
"bigcode/starcoder" : "english",
"openai/whisper-tiny" : "english"}
delimeter = ": "
test_sentences = []
with open("test-cases.txt", "r") as f:
lines = [l.rstrip() for l in f.readlines()]
for l in lines:
if delimeter in l:
language = l[:l.index(delimeter)]
sentence = l[l.index(delimeter) + len(delimeter):]
test_sentences.append((language.lower(), sentence))
for repo in list_repo_hf:
target_language = repo2language[repo]
tokenizer = AutoTokenizer.from_pretrained(repo, trust_remote_code=True)
tokens_hf = []
for language, sentence in test_sentences:
if language == target_language:
tokens = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(sentence))
tokens_hf.append((sentence, tokens))
save_txt = repo2ggml[repo] + ".txt"
with open(save_txt, "w") as f:
f.writelines([sentence + " => " + ",".join(str(t) for t in tokens) + "\n" for sentence, tokens in tokens_hf])