|
#include "ggml/ggml.h" |
|
|
|
#include "common-ggml.h" |
|
#include "common.h" |
|
|
|
#include <cassert> |
|
#include <cmath> |
|
#include <cinttypes> |
|
#include <cstddef> |
|
#include <cstdio> |
|
#include <cstring> |
|
#include <fstream> |
|
#include <iostream> |
|
#include <map> |
|
#include <stdint.h> |
|
#include <string> |
|
#include <unordered_map> |
|
#include <utility> |
|
#include <vector> |
|
|
|
#if defined(_WIN32) |
|
#define NOMINMAX |
|
#include <Windows.h> |
|
bool is_stdin_terminal() { |
|
auto in = GetStdHandle(STD_INPUT_HANDLE); |
|
return GetFileType(in) == FILE_TYPE_CHAR; |
|
} |
|
#else |
|
#include <unistd.h> |
|
bool is_stdin_terminal() { |
|
return isatty(STDIN_FILENO); |
|
} |
|
#endif |
|
|
|
#if defined(_MSC_VER) |
|
#pragma warning(disable: 4244 4267) |
|
#endif |
|
|
|
using piece_t = std::pair<std::size_t, float>; |
|
using piece_map_t = std::unordered_map<std::string, piece_t>; |
|
|
|
struct replit_tokenizer { |
|
gpt_vocab raw_vocab; |
|
piece_map_t piece_map; |
|
std::vector<std::string> vocab; |
|
}; |
|
|
|
std::pair<std::vector<std::size_t>, float> encode_word(const std::string & word, const piece_map_t & model) { |
|
std::vector<int> best_segmentations_starts(word.length() + 1, -1); |
|
best_segmentations_starts[0] = 0; |
|
|
|
std::vector<float> best_segmentations_scores(word.length() + 1, -std::numeric_limits<float>::infinity()); |
|
best_segmentations_scores[0] = 1.0; |
|
|
|
for (size_t start_idx = 0; start_idx < word.length(); ++start_idx) { |
|
float best_score_at_start = best_segmentations_scores[start_idx]; |
|
for (size_t end_idx = start_idx + 1; end_idx <= word.length(); ++end_idx) { |
|
std::string token = word.substr(start_idx, end_idx - start_idx); |
|
if (model.count(token) && best_score_at_start != -std::numeric_limits<float>::infinity()) { |
|
float token_score = model.at(token).second; |
|
float score = token_score + best_score_at_start; |
|
if (best_segmentations_scores[end_idx] == -std::numeric_limits<float>::infinity() || |
|
best_segmentations_scores[end_idx] > score) { |
|
best_segmentations_starts[end_idx] = start_idx; |
|
best_segmentations_scores[end_idx] = score; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (best_segmentations_scores.back() == -std::numeric_limits<float>::infinity()) { |
|
return std::make_pair(std::vector<std::size_t>{0}, 0.0f); |
|
} |
|
|
|
float score = best_segmentations_scores.back(); |
|
int start = best_segmentations_starts.back(); |
|
int end = word.length(); |
|
std::vector<std::size_t> tokens; |
|
while (start != 0) { |
|
const auto token_id = model.at(word.substr(start, end - start)).first; |
|
tokens.insert(tokens.begin(), token_id); |
|
int next_start = best_segmentations_starts[start]; |
|
end = start; |
|
start = next_start; |
|
} |
|
const auto token_id = model.at(word.substr(start, end - start)).first; |
|
tokens.insert(tokens.begin(), token_id); |
|
return std::make_pair(tokens, score); |
|
} |
|
|
|
bool replit_tokenizer_load(replit_tokenizer & tokenizer, std::istream & fin, int max_vocab_size) { |
|
std::string word; |
|
std::vector<char> buf(128); |
|
|
|
for (int i = 0; i < max_vocab_size; i++) { |
|
uint32_t len; |
|
fin.read((char *)&len, sizeof(len)); |
|
|
|
buf.resize(len); |
|
fin.read((char *)buf.data(), len); |
|
word.assign(buf.data(), len); |
|
|
|
float score; |
|
fin.read((char *)&score, sizeof(score)); |
|
|
|
tokenizer.piece_map[word] = std::make_pair(i, -score); |
|
tokenizer.raw_vocab.id_to_token[i] = word; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
std::string replace_all(const std::string & str, |
|
const std::string & find, |
|
const std::string & replace |
|
) { |
|
using namespace std; |
|
string result; |
|
size_t find_len = find.size(); |
|
size_t pos, from = 0; |
|
while (string::npos != (pos = str.find(find, from))) { |
|
result.append(str, from, pos - from); |
|
result.append(replace); |
|
from = pos + find_len; |
|
} |
|
result.append(str, from, string::npos); |
|
return result; |
|
} |
|
|
|
std::string ws_symbol = "\342\226\201"; |
|
std::vector<std::size_t> replit_tokenizer_tokenize(replit_tokenizer & tokenizer, const std::string & text) { |
|
std::vector<std::size_t> tokens; |
|
auto normalized_text = replace_all(text, " ", ws_symbol); |
|
auto tokenized = encode_word(normalized_text, tokenizer.piece_map); |
|
|
|
return tokenized.first; |
|
} |
|
|
|
std::string replit_tokenizer_detokenize(replit_tokenizer & tokenizer, const std::vector<std::size_t> & tokens) { |
|
std::string text; |
|
for (auto token : tokens) { |
|
text += tokenizer.raw_vocab.id_to_token[token]; |
|
} |
|
auto denormalized_text = replace_all(text, ws_symbol, " "); |
|
return denormalized_text; |
|
} |
|
|
|
|
|
struct replit_hparams { |
|
int32_t d_model = 0; |
|
int32_t max_seq_len = 0; |
|
int32_t n_heads = 0; |
|
int32_t n_layers = 0; |
|
int32_t n_vocab = 0; |
|
int32_t ftype = 0; |
|
}; |
|
|
|
struct replit_layer { |
|
|
|
struct ggml_tensor * norm_1_weight; |
|
|
|
|
|
struct ggml_tensor * c_attn_wqkv_weight; |
|
struct ggml_tensor * c_attn_out_proj_weight; |
|
|
|
|
|
struct ggml_tensor * norm_2_weight; |
|
|
|
|
|
struct ggml_tensor * ffn_up_proj; |
|
struct ggml_tensor * ffn_down_proj; |
|
}; |
|
|
|
struct replit_model { |
|
replit_hparams hparams; |
|
|
|
struct ggml_tensor * wte_weight; |
|
struct ggml_tensor * norm_f_weight; |
|
|
|
std::vector<replit_layer> layers; |
|
|
|
|
|
struct ggml_tensor * memory_k; |
|
struct ggml_tensor * memory_v; |
|
|
|
struct ggml_context * ctx; |
|
std::map<std::string, struct ggml_tensor *> tensors; |
|
}; |
|
|
|
|
|
bool replit_model_load(const std::string & fname, replit_model & model, replit_tokenizer & vocab) { |
|
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); |
|
|
|
auto fin = std::ifstream(fname, std::ios::binary); |
|
if (!fin) { |
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); |
|
return false; |
|
} |
|
|
|
|
|
{ |
|
uint32_t magic; |
|
fin.read((char *)&magic, sizeof(magic)); |
|
if (magic != GGML_FILE_MAGIC) { |
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
{ |
|
auto & hparams = model.hparams; |
|
|
|
fin.read((char *)&hparams.d_model, sizeof(hparams.d_model)); |
|
fin.read((char *)&hparams.max_seq_len, sizeof(hparams.max_seq_len)); |
|
fin.read((char *)&hparams.n_heads, sizeof(hparams.n_heads)); |
|
fin.read((char *)&hparams.n_layers, sizeof(hparams.n_layers)); |
|
fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab)); |
|
fin.read((char *)&hparams.ftype, sizeof(hparams.ftype)); |
|
|
|
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; |
|
|
|
printf("%s: d_model = %d\n", __func__, hparams.d_model); |
|
printf("%s: max_seq_len = %d\n", __func__, hparams.max_seq_len); |
|
printf("%s: n_heads = %d\n", __func__, hparams.n_heads); |
|
printf("%s: n_layers = %d\n", __func__, hparams.n_layers); |
|
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); |
|
printf("%s: ftype = %d\n", __func__, hparams.ftype); |
|
printf("%s: qntvr = %d\n", __func__, qntvr); |
|
|
|
hparams.ftype %= GGML_QNT_VERSION_FACTOR; |
|
} |
|
|
|
|
|
replit_tokenizer_load(vocab, fin, model.hparams.n_vocab); |
|
|
|
|
|
|
|
|
|
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype)); |
|
if (wtype == GGML_TYPE_COUNT) { |
|
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(), |
|
model.hparams.ftype); |
|
return false; |
|
} |
|
|
|
auto & ctx = model.ctx; |
|
|
|
size_t ctx_size = 0; |
|
|
|
{ |
|
const auto & hparams = model.hparams; |
|
|
|
const int n_embd = hparams.d_model; |
|
const int n_layer = hparams.n_layers; |
|
const int n_ctx = hparams.max_seq_len; |
|
const int n_vocab = hparams.n_vocab; |
|
|
|
ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); |
|
ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); |
|
|
|
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); |
|
ctx_size += n_layer * (3 * n_embd * n_embd * ggml_type_sizef(wtype)); |
|
ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); |
|
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); |
|
ctx_size += n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); |
|
ctx_size += n_layer * (n_embd * n_embd * 4 * ggml_type_sizef(wtype)); |
|
|
|
ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); |
|
ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); |
|
|
|
ctx_size += (1 + 6 * n_layer) * 512; |
|
|
|
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0)); |
|
} |
|
|
|
|
|
{ |
|
struct ggml_init_params params = { |
|
ctx_size, |
|
NULL, |
|
false, |
|
}; |
|
|
|
model.ctx = ggml_init(params); |
|
if (!model.ctx) { |
|
fprintf(stderr, "%s: ggml_init() failed\n", __func__); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
{ |
|
const auto & hparams = model.hparams; |
|
|
|
const size_t n_embd = hparams.d_model; |
|
const size_t n_layer = hparams.n_layers; |
|
const size_t n_vocab = hparams.n_vocab; |
|
|
|
model.layers.resize(n_layer); |
|
|
|
model.wte_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); |
|
model.norm_f_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
|
|
|
|
model.tensors["transformer.wte.weight"] = model.wte_weight; |
|
model.tensors["transformer.norm_f.weight"] = model.norm_f_weight; |
|
|
|
for (int i = 0; i < (int)n_layer; ++i) { |
|
auto & layer = model.layers[i]; |
|
|
|
layer.norm_1_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
layer.c_attn_wqkv_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd); |
|
layer.c_attn_out_proj_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); |
|
layer.norm_2_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
layer.ffn_up_proj = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd); |
|
layer.ffn_down_proj = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd); |
|
|
|
|
|
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_1.weight"] = layer.norm_1_weight; |
|
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.c_attn_wqkv_weight; |
|
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] = |
|
layer.c_attn_out_proj_weight; |
|
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_2.weight"] = layer.norm_2_weight; |
|
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.up_proj.weight"] = layer.ffn_up_proj; |
|
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.down_proj.weight"] = layer.ffn_down_proj; |
|
} |
|
} |
|
|
|
|
|
{ |
|
const auto & hparams = model.hparams; |
|
|
|
const int n_embd = hparams.d_model; |
|
const int n_layer = hparams.n_layers; |
|
const int n_ctx = hparams.max_seq_len; |
|
|
|
const int64_t n_mem = n_layer * n_ctx; |
|
const int64_t n_elements = n_embd * n_mem; |
|
|
|
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); |
|
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); |
|
|
|
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); |
|
|
|
printf("%s: memory_size = %8.2f MB, n_mem = %" PRIu64 "\n", __func__, memory_size / 1024.0 / 1024.0, n_mem); |
|
} |
|
|
|
|
|
{ |
|
int n_tensors = 0; |
|
size_t total_size = 0; |
|
|
|
printf("%s: ", __func__); |
|
|
|
while (true) { |
|
int32_t n_dims; |
|
int32_t length; |
|
int32_t ttype; |
|
|
|
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); |
|
fin.read(reinterpret_cast<char *>(&length), sizeof(length)); |
|
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype)); |
|
|
|
if (fin.eof()) { |
|
break; |
|
} |
|
|
|
int32_t nelements = 1; |
|
int32_t ne[2] = {1, 1}; |
|
for (int i = 0; i < n_dims; ++i) { |
|
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); |
|
nelements *= ne[i]; |
|
} |
|
|
|
std::string name(length, 0); |
|
fin.read(&name[0], length); |
|
|
|
if (model.tensors.find(name) == model.tensors.end()) { |
|
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str()); |
|
return false; |
|
} |
|
|
|
auto tensor = model.tensors[name]; |
|
if (ggml_nelements(tensor) != nelements) { |
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str()); |
|
return false; |
|
} |
|
|
|
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { |
|
fprintf(stderr, |
|
"%s: tensor '%s' has wrong shape in model file: got [%5d, " |
|
"%5d], expected [%5d, %5d]\n", |
|
__func__, name.c_str(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]); |
|
return false; |
|
} |
|
|
|
|
|
if (0) { |
|
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], |
|
ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor)); |
|
} |
|
|
|
const size_t bpe = ggml_type_size(ggml_type(ttype)); |
|
|
|
if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { |
|
fprintf(stderr, |
|
"%s: tensor '%s' has wrong size in model file: got %zu, " |
|
"expected %zu\n", |
|
__func__, name.c_str(), ggml_nbytes(tensor), nelements * bpe); |
|
return false; |
|
} |
|
|
|
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor)); |
|
|
|
total_size += ggml_nbytes(tensor); |
|
if (++n_tensors % 8 == 0) { |
|
printf("."); |
|
fflush(stdout); |
|
} |
|
} |
|
|
|
printf(" done\n"); |
|
|
|
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors); |
|
} |
|
|
|
fin.close(); |
|
|
|
return true; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool replit_eval(const replit_model & model, const int n_threads, const int n_past, |
|
const std::vector<gpt_vocab::id> & embd_inp, std::vector<float> & embd_w, bool logits_all, |
|
size_t & mem_per_token) { |
|
const int N = embd_inp.size(); |
|
|
|
const auto & hparams = model.hparams; |
|
|
|
const int n_embd = hparams.d_model; |
|
const int n_layer = hparams.n_layers; |
|
const int n_head = hparams.n_heads; |
|
const int n_vocab = hparams.n_vocab; |
|
const int n_ctx = hparams.max_seq_len; |
|
const float eps = 1e-5f; |
|
|
|
static size_t buf_size = 256u * 1024 * 1024; |
|
static void * buf = malloc(buf_size); |
|
|
|
if (mem_per_token > 0 && mem_per_token * N > buf_size) { |
|
const size_t buf_size_new = 1.1 * (mem_per_token * N); |
|
|
|
|
|
|
|
|
|
buf_size = buf_size_new; |
|
buf = realloc(buf, buf_size); |
|
if (buf == nullptr) { |
|
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); |
|
return false; |
|
} |
|
} |
|
|
|
struct ggml_init_params params = { |
|
buf_size, |
|
buf, |
|
false, |
|
}; |
|
|
|
struct ggml_context * ctx0 = ggml_init(params); |
|
struct ggml_cgraph gf = {}; |
|
|
|
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); |
|
memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd)); |
|
|
|
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte_weight, embd); |
|
|
|
for (int il = 0; il < n_layer; ++il) { |
|
|
|
struct ggml_tensor * cur; |
|
|
|
|
|
{ |
|
cur = ggml_norm(ctx0, inpL, eps); |
|
|
|
cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_1_weight, cur), cur); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
{ |
|
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_wqkv_weight, cur); |
|
|
|
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd); |
|
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd); |
|
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd); |
|
|
|
|
|
{ |
|
struct ggml_tensor * k = |
|
ggml_view_1d(ctx0, model.memory_k, N * n_embd, |
|
(ggml_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past)); |
|
struct ggml_tensor * v = |
|
ggml_view_1d(ctx0, model.memory_v, N * n_embd, |
|
(ggml_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past)); |
|
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); |
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor * Q = ggml_permute( |
|
ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), 0, 2, |
|
1, 3); |
|
|
|
|
|
|
|
struct ggml_tensor * K = |
|
ggml_permute(ctx0, |
|
ggml_reshape_3d(ctx0, |
|
ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_embd, |
|
il * n_ctx * ggml_element_size(model.memory_k) * n_embd), |
|
n_embd / n_head, n_head, n_past + N), |
|
0, 2, 1, 3); |
|
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); |
|
|
|
|
|
struct ggml_tensor * KQ_scaled = |
|
ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head))); |
|
|
|
struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, n_past, n_head, 8.0f); |
|
|
|
|
|
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past); |
|
|
|
|
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); |
|
|
|
|
|
|
|
struct ggml_tensor * V_trans = ggml_cpy( |
|
ctx0, |
|
ggml_permute(ctx0, |
|
ggml_reshape_3d(ctx0, |
|
ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd, |
|
il * n_ctx * ggml_element_size(model.memory_v) * n_embd), |
|
n_embd / n_head, n_head, n_past + N), |
|
1, 2, 0, 3), |
|
ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd / n_head, n_head)); |
|
|
|
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); |
|
|
|
|
|
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); |
|
|
|
|
|
cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); |
|
|
|
|
|
{ cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); } |
|
} |
|
|
|
inpL = ggml_add(ctx0, inpL, cur); |
|
|
|
|
|
{ |
|
cur = ggml_norm(ctx0, inpL, eps); |
|
|
|
cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_2_weight, cur), cur); |
|
} |
|
|
|
|
|
{ |
|
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_up_proj, cur); |
|
|
|
|
|
cur = ggml_gelu(ctx0, cur); |
|
|
|
|
|
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down_proj, cur); |
|
} |
|
|
|
|
|
inpL = ggml_add(ctx0, inpL, cur); |
|
} |
|
|
|
|
|
{ |
|
inpL = ggml_norm(ctx0, inpL, eps); |
|
|
|
inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm_f_weight, inpL), inpL); |
|
} |
|
|
|
|
|
inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL); |
|
|
|
|
|
|
|
|
|
|
|
ggml_build_forward_expand(&gf, inpL); |
|
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (logits_all) { |
|
|
|
embd_w.resize(n_vocab * N); |
|
memcpy(embd_w.data(), (float *)ggml_get_data(inpL), sizeof(float) * n_vocab * N); |
|
} else { |
|
|
|
embd_w.resize(n_vocab); |
|
memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab); |
|
} |
|
|
|
if (mem_per_token == 0) { |
|
mem_per_token = ggml_used_mem(ctx0) / N; |
|
} |
|
|
|
|
|
ggml_free(ctx0); |
|
|
|
return true; |
|
} |
|
|
|
int main(int argc, char ** argv) { |
|
const int64_t t_main_start_us = ggml_time_us(); |
|
|
|
gpt_params params; |
|
params.model = ""; |
|
|
|
if (gpt_params_parse(argc, argv, params) == false) { |
|
return 1; |
|
} |
|
|
|
if (params.seed < 0) { |
|
params.seed = time(NULL); |
|
} |
|
|
|
printf("%s: seed = %d\n", __func__, params.seed); |
|
|
|
std::mt19937 rng(params.seed); |
|
if (params.prompt.empty()) { |
|
if (!is_stdin_terminal()) { |
|
std::string line; |
|
while (std::getline(std::cin, line)) { |
|
params.prompt = params.prompt + "\n" + line; |
|
} |
|
} else { |
|
params.prompt = gpt_random_prompt(rng); |
|
} |
|
} |
|
|
|
int64_t t_load_us = 0; |
|
|
|
replit_tokenizer vocab; |
|
replit_model model; |
|
|
|
|
|
{ |
|
const int64_t t_start_us = ggml_time_us(); |
|
|
|
if (!replit_model_load(params.model, model, vocab)) { |
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); |
|
return 1; |
|
} |
|
|
|
t_load_us = ggml_time_us() - t_start_us; |
|
} |
|
|
|
int n_past = 0; |
|
|
|
int64_t t_sample_us = 0; |
|
int64_t t_predict_us = 0; |
|
|
|
std::vector<float> logits; |
|
|
|
|
|
std::vector<std::size_t> embd_inp = replit_tokenizer_tokenize(vocab, params.prompt); |
|
|
|
printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); |
|
|
|
for (size_t i = 0; i < embd_inp.size(); i++) { |
|
printf("%s: token[%zu] = %6zu\n", __func__, i, embd_inp[i]); |
|
|
|
} |
|
printf("\n"); |
|
|
|
params.n_predict = std::min(params.n_predict, model.hparams.max_seq_len - (int)embd_inp.size()); |
|
|
|
std::vector<gpt_vocab::id> embd; |
|
|
|
|
|
size_t mem_per_token = 0; |
|
replit_eval(model, params.n_threads, 0, {0, 1, 2, 3}, logits, false, mem_per_token); |
|
|
|
for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++) { |
|
|
|
if (embd.size() > 0) { |
|
const int64_t t_start_us = ggml_time_us(); |
|
|
|
if (!replit_eval(model, params.n_threads, n_past, embd, logits, false, mem_per_token)) { |
|
printf("Failed to predict\n"); |
|
return 1; |
|
} |
|
|
|
t_predict_us += ggml_time_us() - t_start_us; |
|
} |
|
|
|
n_past += embd.size(); |
|
embd.clear(); |
|
|
|
if (i >= embd_inp.size()) { |
|
|
|
const int top_k = params.top_k; |
|
const float top_p = params.top_p; |
|
const float temp = params.temp; |
|
|
|
const int n_vocab = model.hparams.n_vocab; |
|
|
|
gpt_vocab::id id = 0; |
|
|
|
{ |
|
const int64_t t_start_sample_us = ggml_time_us(); |
|
|
|
id = gpt_sample_top_k_top_p(vocab.raw_vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, |
|
temp, rng); |
|
|
|
t_sample_us += ggml_time_us() - t_start_sample_us; |
|
} |
|
|
|
|
|
embd.push_back(id); |
|
} else { |
|
|
|
for (size_t k = i; k < embd_inp.size(); k++) { |
|
embd.push_back(embd_inp[k]); |
|
if (int32_t(embd.size()) > params.n_batch) { |
|
break; |
|
} |
|
} |
|
i += embd.size() - 1; |
|
} |
|
|
|
|
|
for (auto id : embd) { |
|
printf("%s", replit_tokenizer_detokenize(vocab, {static_cast<std::size_t>(id)}).c_str()); |
|
} |
|
fflush(stdout); |
|
|
|
|
|
if (embd.back() == 0) { |
|
break; |
|
} |
|
} |
|
|
|
|
|
{ |
|
const int64_t t_main_end_us = ggml_time_us(); |
|
|
|
printf("\n\n"); |
|
printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token); |
|
printf("%s: load time = %8.2f ms\n", __func__, t_load_us / 1000.0f); |
|
printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us / 1000.0f); |
|
printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us / 1000.0f, |
|
t_predict_us / 1000.0f / n_past); |
|
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f); |
|
} |
|
|
|
ggml_free(model.ctx); |
|
|
|
return 0; |
|
} |
|
|