|
|
|
import sys |
|
import gguf |
|
import numpy as np |
|
from tensorflow import keras |
|
from tensorflow.keras import layers |
|
|
|
def train(model_name): |
|
|
|
num_classes = 10 |
|
input_shape = (28, 28, 1) |
|
|
|
|
|
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() |
|
|
|
|
|
x_train = x_train.astype("float32") / 255 |
|
x_test = x_test.astype("float32") / 255 |
|
|
|
x_train = np.expand_dims(x_train, -1) |
|
x_test = np.expand_dims(x_test, -1) |
|
print("x_train shape:", x_train.shape) |
|
print(x_train.shape[0], "train samples") |
|
print(x_test.shape[0], "test samples") |
|
|
|
|
|
y_train = keras.utils.to_categorical(y_train, num_classes) |
|
y_test = keras.utils.to_categorical(y_test, num_classes) |
|
|
|
model = keras.Sequential( |
|
[ |
|
keras.Input(shape=input_shape), |
|
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"), |
|
layers.MaxPooling2D(pool_size=(2, 2)), |
|
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), |
|
layers.MaxPooling2D(pool_size=(2, 2)), |
|
layers.Flatten(), |
|
layers.Dropout(0.5), |
|
layers.Dense(num_classes, activation="softmax"), |
|
] |
|
) |
|
|
|
model.summary() |
|
batch_size = 128 |
|
epochs = 15 |
|
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) |
|
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1) |
|
|
|
score = model.evaluate(x_test, y_test, verbose=0) |
|
print("Test loss:", score[0]) |
|
print("Test accuracy:", score[1]) |
|
model.save(model_name) |
|
print("Keras model saved to '" + model_name + "'") |
|
|
|
def convert(model_name): |
|
model = keras.models.load_model(model_name) |
|
gguf_model_name = model_name + ".gguf" |
|
gguf_writer = gguf.GGUFWriter(gguf_model_name, "mnist-cnn") |
|
|
|
kernel1 = model.layers[0].weights[0].numpy() |
|
kernel1 = np.moveaxis(kernel1, [2,3], [0,1]) |
|
kernel1 = kernel1.astype(np.float16) |
|
gguf_writer.add_tensor("kernel1", kernel1, raw_shape=(32, 1, 3, 3)) |
|
|
|
bias1 = model.layers[0].weights[1].numpy() |
|
bias1 = np.repeat(bias1, 26*26) |
|
gguf_writer.add_tensor("bias1", bias1, raw_shape=(1, 32, 26, 26)) |
|
|
|
kernel2 = model.layers[2].weights[0].numpy() |
|
kernel2 = np.moveaxis(kernel2, [0,1,2,3], [2,3,1,0]) |
|
kernel2 = kernel2.astype(np.float16) |
|
gguf_writer.add_tensor("kernel2", kernel2, raw_shape=(64, 32, 3, 3)) |
|
|
|
bias2 = model.layers[2].weights[1].numpy() |
|
bias2 = np.repeat(bias2, 11*11) |
|
gguf_writer.add_tensor("bias2", bias2, raw_shape=(1, 64, 11, 11)) |
|
|
|
dense_w = model.layers[-1].weights[0].numpy() |
|
dense_w = dense_w.transpose() |
|
gguf_writer.add_tensor("dense_w", dense_w, raw_shape=(10, 1600)) |
|
|
|
dense_b = model.layers[-1].weights[1].numpy() |
|
gguf_writer.add_tensor("dense_b", dense_b) |
|
|
|
gguf_writer.write_header_to_file() |
|
gguf_writer.write_kv_data_to_file() |
|
gguf_writer.write_tensors_to_file() |
|
gguf_writer.close() |
|
print("Model converted and saved to '{}'".format(gguf_model_name)) |
|
|
|
if __name__ == '__main__': |
|
if len(sys.argv) < 3: |
|
print("Usage: %s <train|convert> <model_name>".format(sys.argv[0])) |
|
sys.exit(1) |
|
if sys.argv[1] == 'train': |
|
train(sys.argv[2]) |
|
elif sys.argv[1] == 'convert': |
|
convert(sys.argv[2]) |
|
else: |
|
print("Usage: %s <train|convert> <model_name>".format(sys.argv[0])) |
|
sys.exit(1) |
|
|