|
|
|
|
|
|
|
import sys |
|
import struct |
|
import json |
|
import torch |
|
import numpy as np |
|
import re |
|
import os |
|
import argparse |
|
|
|
from transformers import AutoModelForCausalLM |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BloomForCausalLM |
|
|
|
|
|
def bytes_to_unicode(): |
|
""" |
|
Returns list of utf-8 byte and a corresponding list of unicode strings. |
|
The reversible bpe codes work on unicode strings. |
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. |
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. |
|
This is a signficant percentage of your normal, say, 32K bpe vocab. |
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. |
|
And avoids mapping to whitespace/control characters the bpe code barfs on. |
|
""" |
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2**8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2**8+n) |
|
n += 1 |
|
cs = [chr(n) for n in cs] |
|
return dict(zip(bs, cs)) |
|
|
|
parser = argparse.ArgumentParser(description='Convert starcoder HF model to GGML') |
|
parser.add_argument('model_name_or_path', type=str, help='Name of model on HF hub, or local model folder') |
|
parser.add_argument('--outfile', type=str, default='ggml-model.bin', help='Path of GGML file to write.') |
|
parser.add_argument('--use_f32', action="store_true", help='Save GGML file in fp32') |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
use_f16 = not args.use_f32 |
|
|
|
fname_out = args.outfile |
|
fname_dir = os.path.dirname(fname_out) |
|
if fname_dir: |
|
os.makedirs(fname_dir, exist_ok=True) |
|
|
|
print("Loading model: ", args.model_name_or_path) |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) |
|
config = AutoConfig.from_pretrained(args.model_name_or_path, trust_remote_code=True) |
|
hparams = config.to_dict() |
|
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, config=config, torch_dtype=torch.float16 if use_f16 else torch.float32, low_cpu_mem_usage=True, trust_remote_code=True, offload_state_dict=True) |
|
print("Model loaded: ", args.model_name_or_path) |
|
|
|
list_vars = model.state_dict() |
|
|
|
encoder = tokenizer.vocab |
|
|
|
encoder.update(tokenizer.get_added_vocab()) |
|
print(hparams) |
|
|
|
print("Saving ggml model to: ", fname_out) |
|
fout = open(fname_out, "wb") |
|
|
|
fout.write(struct.pack("i", 0x67676d6c)) |
|
vocab_size = hparams["vocab_size"] |
|
fout.write(struct.pack("i", vocab_size)) |
|
|
|
fout.write(struct.pack("i", hparams["n_positions"])) |
|
fout.write(struct.pack("i", hparams["n_embd"])) |
|
fout.write(struct.pack("i", hparams["n_head"])) |
|
fout.write(struct.pack("i", hparams["n_layer"])) |
|
fout.write(struct.pack("i", use_f16)) |
|
|
|
byte_encoder = bytes_to_unicode() |
|
byte_decoder = {v:k for k, v in byte_encoder.items()} |
|
|
|
fout.write(struct.pack("i", vocab_size)) |
|
|
|
counter = 0 |
|
|
|
for key in sorted(encoder, key=encoder.get): |
|
text = bytearray([byte_decoder[c] for c in key]) |
|
fout.write(struct.pack("i", len(text))) |
|
fout.write(text) |
|
counter += 1 |
|
|
|
|
|
while counter < vocab_size: |
|
fout.write(struct.pack("i", len(text))) |
|
fout.write(text) |
|
counter += 1 |
|
|
|
|
|
for name in list_vars.keys(): |
|
data = list_vars[name].squeeze().numpy() |
|
print("Processing variable: " + name + " with shape: ", data.shape) |
|
|
|
|
|
if name == "transformer.ln_f.weight": |
|
name = "model/ln_f/g" |
|
elif name == "transformer.ln_f.bias": |
|
name = "model/ln_f/b" |
|
elif name == "transformer.wte.weight": |
|
name = "model/wte" |
|
elif name == "transformer.wpe.weight": |
|
name = "model/wpe" |
|
elif name == "lm_head.weight": |
|
name = "model/lm_head" |
|
elif re.match(r"transformer.h\.\d+\.ln_1\.weight", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/ln_1/g" |
|
elif re.match(r"transformer.h\.\d+\.ln_1\.bias", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/ln_1/b" |
|
elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.weight", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/attn/c_attn/w" |
|
elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.bias", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/attn/c_attn/b" |
|
elif re.match(r"transformer.h\.\d+\.attn\.c_proj\.weight", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/attn/c_proj/w" |
|
elif re.match(r"transformer.h.\d+.attn.c_proj.bias", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/attn/c_proj/b" |
|
elif re.match(r"transformer.h.\d+.ln_2.weight", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/ln_2/g" |
|
elif re.match(r"transformer.h.\d+.ln_2.bias", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/ln_2/b" |
|
elif re.match(r"transformer.h.\d+.mlp.c_fc.weight", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/mlp/c_fc/w" |
|
elif re.match(r"transformer.h.\d+.mlp.c_fc.bias", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/mlp/c_fc/b" |
|
elif re.match(r"transformer.h.\d+.mlp.c_proj.weight", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/mlp/c_proj/w" |
|
elif re.match(r"transformer.h.\d+.mlp.c_proj.bias", name): |
|
i = re.findall("\d+", name)[0] |
|
name = f"model/h{i}/mlp/c_proj/b" |
|
else: |
|
print("Unrecognized variable name. %s", name) |
|
|
|
|
|
if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"): |
|
print(" Skipping variable: " + name) |
|
continue |
|
|
|
n_dims = len(data.shape); |
|
|
|
|
|
ftype = 0; |
|
if use_f16: |
|
if (name == "model/wte" or name == "model/lm_head" or name[-2:] == "/g" or name[-2:] == "/w") and n_dims == 2: |
|
print(" Converting to float16") |
|
data = data.astype(np.float16) |
|
ftype = 1 |
|
else: |
|
print(" Converting to float32") |
|
data = data.astype(np.float32) |
|
ftype = 0 |
|
|
|
"model/h.*/attn/c_attn/w" |
|
"model/h.*/attn/c_proj/w" |
|
"model/h.*/mlp/c_fc/w" |
|
"model/h.*/mlp/c_proj/w" |
|
if name[-14:] == "/attn/c_attn/w" or name[-14:] == "/attn/c_attn/b": |
|
print(" Duplicate K,V heads to use MHA instead of MQA") |
|
|
|
embed_dim = hparams["n_embd"] |
|
head_dim = embed_dim // hparams["n_head"] |
|
|
|
|
|
q, k ,v = np.split(data, (hparams["n_head"] * head_dim, (hparams["n_head"] + 1) * head_dim), axis=0) |
|
|
|
if len(k.shape) == 2: |
|
k = np.tile(k, (hparams["n_head"], 1)) |
|
v = np.tile(v, (hparams["n_head"], 1)) |
|
elif len(k.shape) == 1: |
|
k = np.tile(k, (hparams["n_head"])) |
|
v = np.tile(v, (hparams["n_head"])) |
|
|
|
data = np.concatenate((q, k, v), axis=0) |
|
|
|
|
|
str = name.encode('utf-8') |
|
fout.write(struct.pack("iii", n_dims, len(str), ftype)) |
|
for i in range(n_dims): |
|
fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) |
|
fout.write(str); |
|
|
|
|
|
data.tofile(fout) |
|
|
|
fout.close() |
|
|
|
print("Done. Output file: " + fname_out) |
|
print("") |
|
|