svjack's picture
Upload folder using huggingface_hub
13d3ba0
#include "ggml/ggml.h"
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#if defined(_WIN32)
#include <windows.h>
typedef volatile LONG atomic_int;
static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
return InterlockedExchangeAdd(ptr, inc);
}
#else
#include <stdatomic.h>
#endif
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
struct ggml_context * make_ctx(void) {
struct ggml_init_params params = {
/*.mem_size =*/ 1 * 1024 * 1024,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ false,
};
return ggml_init(params);
}
char g_userdata[] = "ggml";
atomic_int g_custom1_count = 0;
atomic_int g_custom2_count = 0;
atomic_int g_custom3_count = 0;
void custom1(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata) {
// check that the userdata is correct
assert(userdata == NULL);
assert(ggml_are_same_shape(dst, a));
atomic_fetch_add(&g_custom1_count, 1);
const float * a_data = ggml_get_data_f32(a);
float * dst_data = ggml_get_data_f32(dst);
// this assumes that the tensors are contiguous
assert(ggml_is_contiguous(dst));
assert(ggml_is_contiguous(a));
// parallelize by elements
const int ne = (int)ggml_nelements(dst);
const int dr = (ne + nth - 1) / nth;
const int ie0 = dr * ith;
const int ie1 = MIN(ie0 + dr, ne);
for (int i = ie0; i < ie1; ++i) {
dst_data[i] = a_data[i] * 2;
}
}
void custom2(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata) {
// check that the userdata is correct
assert(userdata == g_userdata);
assert(strcmp(userdata, "ggml") == 0);
assert(ggml_are_same_shape(dst, a));
assert(ggml_are_same_shape(dst, b));
atomic_fetch_add(&g_custom2_count, 1);
const float * a_data = ggml_get_data_f32(a);
const float * b_data = ggml_get_data_f32(b);
float * dst_data = ggml_get_data_f32(dst);
// parallelize by rows
const int nr = (int)ggml_nrows(dst);
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
// number of columns
const int nc = (int)dst->ne[0];
// this assumes that the tensors are contiguous
assert(ggml_is_contiguous(dst));
assert(ggml_is_contiguous(a));
assert(ggml_is_contiguous(b));
for (int ir = ir0; ir < ir1; ++ir) {
for (int ic = 0; ic < nc; ++ic) {
const int i = ir * nc + ic;
dst_data[i] = a_data[i] + b_data[i];
}
}
}
void custom3(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata) {
// check that the userdata is correct
assert(userdata == g_userdata);
assert(strcmp(userdata, "ggml") == 0);
assert(ggml_are_same_shape(dst, a));
assert(ggml_are_same_shape(dst, b));
assert(ggml_are_same_shape(dst, c));
atomic_fetch_add(&g_custom3_count, 1);
const float * a_data = ggml_get_data_f32(a);
const float * b_data = ggml_get_data_f32(b);
const float * c_data = ggml_get_data_f32(c);
float * dst_data = ggml_get_data_f32(dst);
// dont parallelize
assert(ith == 0);
// number of elements
const int ne = (int)ggml_nelements(dst);
// this assumes that the tensors are contiguous
assert(ggml_is_contiguous(dst));
assert(ggml_is_contiguous(a));
assert(ggml_is_contiguous(b));
assert(ggml_is_contiguous(c));
for (int i = 0; i < ne; ++i) {
dst_data[i] = a_data[i] + b_data[i] + c_data[i];
}
}
int main(int argc, const char** argv) {
float buf1_f32[1024];
for (int i = 0; i < 1024; ++i) {
buf1_f32[i] = (float)(i + 1);
}
float buf2_f32[1024];
for (int i = 0; i < 1024; ++i) {
buf2_f32[i] = (float)(i + 1) * 2;
}
float buf3_f32[1024];
for (int i = 0; i < 1024; ++i) {
buf3_f32[i] = (float)(i + 1) * 3;
}
// map_custom1
// 2 tasks, no userdata, parallelized by elements
{
struct ggml_context * ctx = make_ctx();
struct ggml_tensor * t = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
memcpy(t->data, buf1_f32, ggml_nbytes(t));
struct ggml_tensor * m1 = ggml_map_custom1(ctx, t, custom1, 2, NULL);
struct ggml_cgraph graph = ggml_build_forward(m1);
ggml_graph_compute_with_ctx(ctx, &graph, 4);
const float * output = ggml_get_data_f32(m1);
for (int i = 0; i < ggml_nelements(m1); ++i) {
assert(output[i] == buf1_f32[i] * 2);
}
assert(g_custom1_count == 2);
ggml_free(ctx);
}
// map_custom2
// max tasks (4), userdata, parallelized by rows
{
struct ggml_context * ctx = make_ctx();
struct ggml_tensor * t1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
memcpy(t1->data, buf1_f32, ggml_nbytes(t1));
struct ggml_tensor * t2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
memcpy(t2->data, buf2_f32, ggml_nbytes(t2));
struct ggml_tensor * m2 = ggml_map_custom2(ctx, t1, t2, custom2, GGML_N_TASKS_MAX, g_userdata);
struct ggml_cgraph graph = ggml_build_forward(m2);
ggml_graph_compute_with_ctx(ctx, &graph, 4);
const float * output = ggml_get_data_f32(m2);
for (int i = 0; i < ggml_nelements(m2); ++i) {
assert(output[i] == buf1_f32[i] + buf2_f32[i]);
}
assert(g_custom2_count == 4);
ggml_free(ctx);
}
// map_custom3
// 1 task, userdata, not parallelized
{
struct ggml_context * ctx = make_ctx();
struct ggml_tensor * t1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
memcpy(t1->data, buf1_f32, ggml_nbytes(t1));
struct ggml_tensor * t2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
memcpy(t2->data, buf2_f32, ggml_nbytes(t2));
struct ggml_tensor * t3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
memcpy(t3->data, buf3_f32, ggml_nbytes(t3));
struct ggml_tensor * m3 = ggml_map_custom3(ctx, t1, t2, t3, custom3, 1, g_userdata);
struct ggml_cgraph graph = ggml_build_forward(m3);
ggml_graph_compute_with_ctx(ctx, &graph, 4);
const float * output = ggml_get_data_f32(m3);
for (int i = 0; i < ggml_nelements(m3); ++i) {
assert(output[i] == buf1_f32[i] + buf2_f32[i] + buf3_f32[i]);
}
assert(g_custom3_count == 1);
ggml_free(ctx);
}
return 0;
}