|
const std = @import("std"); |
|
const c = @cImport({ |
|
@cInclude("ggml/ggml.h"); |
|
}); |
|
|
|
pub fn main() !void { |
|
const n_threads = 2; |
|
|
|
const params = .{ |
|
.mem_size = 128*1024*1024, |
|
.mem_buffer = null, |
|
.no_alloc = false, |
|
}; |
|
|
|
const ctx0 = c.ggml_init(params); |
|
defer c.ggml_free(ctx0); |
|
|
|
{ |
|
const x = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 1); |
|
|
|
c.ggml_set_param(ctx0, x); |
|
|
|
const a = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 1); |
|
const b = c.ggml_mul(ctx0, x, x); |
|
const f = c.ggml_mul(ctx0, b, a); |
|
|
|
// a*x^2 |
|
// 2*a*x |
|
|
|
c.ggml_print_objects(ctx0); |
|
|
|
const gf = c.ggml_build_forward(f); |
|
const gb = c.ggml_build_backward(ctx0, @constCast(&gf), false); |
|
|
|
_ = c.ggml_set_f32(x, 2.0); |
|
_ = c.ggml_set_f32(a, 3.0); |
|
|
|
c.ggml_graph_reset(@constCast(&gf)); |
|
_ = c.ggml_set_f32(f.*.grad, 1.0); |
|
|
|
c.ggml_graph_compute_with_ctx(ctx0, @constCast(&gb), n_threads); |
|
|
|
std.debug.print("f = {d:.6}\n", .{c.ggml_get_f32_1d(f, 0)}); |
|
std.debug.print("df/dx = {d:.6}\n", .{c.ggml_get_f32_1d(x.*.grad, 0)}); |
|
|
|
try std.testing.expect(c.ggml_get_f32_1d(f, 0) == 12.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x.*.grad, 0) == 12.0); |
|
|
|
_ = c.ggml_set_f32(x, 3.0); |
|
|
|
c.ggml_graph_reset(@constCast(&gf)); |
|
_ = c.ggml_set_f32(f.*.grad, 1.0); |
|
|
|
c.ggml_graph_compute_with_ctx(ctx0, @constCast(&gb), n_threads); |
|
|
|
std.debug.print("f = {d:.6}\n", .{c.ggml_get_f32_1d(f, 0)}); |
|
std.debug.print("df/dx = {d:.6}\n", .{c.ggml_get_f32_1d(x.*.grad, 0)}); |
|
|
|
try std.testing.expect(c.ggml_get_f32_1d(f, 0) == 27.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x.*.grad, 0) == 18.0); |
|
|
|
c.ggml_graph_dump_dot(&gf, null, "test1-1-forward.dot"); |
|
c.ggml_graph_dump_dot(&gb, &gf, "test1-1-backward.dot"); |
|
} |
|
|
|
///////////////////////////////////////////////////////////// |
|
|
|
{ |
|
const x1 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 1); |
|
const x2 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 1); |
|
const x3 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 1); |
|
|
|
_ = c.ggml_set_f32(x1, 3.0); |
|
_ = c.ggml_set_f32(x2, 1.0); |
|
_ = c.ggml_set_f32(x3, 0.0); |
|
|
|
c.ggml_set_param(ctx0, x1); |
|
c.ggml_set_param(ctx0, x2); |
|
|
|
const y = c.ggml_add(ctx0, c.ggml_mul(ctx0, x1, x1), c.ggml_mul(ctx0, x1, x2)); |
|
|
|
const gf = c.ggml_build_forward(y); |
|
const gb = c.ggml_build_backward(ctx0, @constCast(&gf), false); |
|
|
|
c.ggml_graph_reset(@constCast(&gf)); |
|
_ = c.ggml_set_f32(y.*.grad, 1.0); |
|
|
|
c.ggml_graph_compute_with_ctx(ctx0, @constCast(&gb), n_threads); |
|
|
|
std.debug.print("y = {d:.6}\n", .{c.ggml_get_f32_1d(y, 0)}); |
|
std.debug.print("df/dx1 = {d:.6}\n", .{c.ggml_get_f32_1d(x1.*.grad, 0)}); |
|
std.debug.print("df/dx2 = {d:.6}\n", .{c.ggml_get_f32_1d(x2.*.grad, 0)}); |
|
|
|
try std.testing.expect(c.ggml_get_f32_1d(y, 0) == 12.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 0) == 7.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 0) == 3.0); |
|
|
|
const g1 = x1.*.grad; |
|
const g2 = x2.*.grad; |
|
|
|
const gbb = c.ggml_build_backward(ctx0, @constCast(&gb), true); |
|
|
|
c.ggml_graph_reset(@constCast(&gb)); |
|
_ = c.ggml_set_f32(g1.*.grad, 1.0); |
|
_ = c.ggml_set_f32(g2.*.grad, 1.0); |
|
|
|
c.ggml_graph_compute_with_ctx(ctx0, @constCast(&gbb), n_threads); |
|
|
|
std.debug.print("H * [1, 1] = [ {d:.6} {d:.6} ]\n", .{c.ggml_get_f32_1d(x1.*.grad, 0), c.ggml_get_f32_1d(x2.*.grad, 0)}); |
|
|
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 0) == 3.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 0) == 1.0); |
|
|
|
c.ggml_graph_dump_dot(&gf, null, "test1-2-forward.dot"); |
|
c.ggml_graph_dump_dot(&gb, &gf, "test1-2-backward.dot"); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////// |
|
|
|
{ |
|
const x1 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 1); |
|
const x2 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 1); |
|
|
|
c.ggml_set_param(ctx0, x1); |
|
c.ggml_set_param(ctx0, x2); |
|
|
|
const y = c.ggml_mul(ctx0, c.ggml_add(ctx0, c.ggml_mul(ctx0, x1, x1), c.ggml_mul(ctx0, x1, x2)), x1); |
|
|
|
const gf = c.ggml_build_forward(y); |
|
const gb = c.ggml_build_backward(ctx0, @constCast(&gf), false); |
|
|
|
_ = c.ggml_set_f32(x1, 3.0); |
|
_ = c.ggml_set_f32(x2, 4.0); |
|
|
|
c.ggml_graph_reset(@constCast(&gf)); |
|
_ = c.ggml_set_f32(y.*.grad, 1.0); |
|
|
|
c.ggml_graph_compute_with_ctx(ctx0, @constCast(&gb), n_threads); |
|
|
|
std.debug.print("y = {d:.6}\n", .{c.ggml_get_f32_1d(y, 0)}); |
|
std.debug.print("df/dx1 = {d:.6}\n", .{c.ggml_get_f32_1d(x1.*.grad, 0)}); |
|
std.debug.print("df/dx2 = {d:.6}\n", .{c.ggml_get_f32_1d(x2.*.grad, 0)}); |
|
|
|
try std.testing.expect(c.ggml_get_f32_1d(y, 0) == 63.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 0) == 51.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 0) == 9.0); |
|
|
|
c.ggml_graph_dump_dot(&gf, null, "test1-3-forward.dot"); |
|
c.ggml_graph_dump_dot(&gb, &gf, "test1-3-backward.dot"); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////// |
|
|
|
{ |
|
const x1 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 1); |
|
const x2 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 1); |
|
const x3 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 1); |
|
|
|
c.ggml_set_param(ctx0, x1); |
|
c.ggml_set_param(ctx0, x2); |
|
c.ggml_set_param(ctx0, x3); |
|
|
|
const y = c.ggml_mul(ctx0, c.ggml_mul(ctx0, c.ggml_mul(ctx0, x1, x1), c.ggml_mul(ctx0, x2, x2)), x3); |
|
|
|
const gf = c.ggml_build_forward(y); |
|
const gb = c.ggml_build_backward(ctx0, @constCast(&gf), false); |
|
|
|
_ = c.ggml_set_f32(x1, 1.0); |
|
_ = c.ggml_set_f32(x2, 2.0); |
|
_ = c.ggml_set_f32(x3, 3.0); |
|
|
|
c.ggml_graph_reset(@constCast(&gf)); |
|
_ = c.ggml_set_f32(y.*.grad, 1.0); |
|
|
|
c.ggml_graph_compute_with_ctx(ctx0, @constCast(&gb), n_threads); |
|
|
|
std.debug.print("y = {d:.6}\n", .{c.ggml_get_f32_1d(y, 0)}); |
|
std.debug.print("df/dx1 = {d:.6}\n", .{c.ggml_get_f32_1d(x1.*.grad, 0)}); |
|
std.debug.print("df/dx2 = {d:.6}\n", .{c.ggml_get_f32_1d(x2.*.grad, 0)}); |
|
std.debug.print("df/dx3 = {d:.6}\n", .{c.ggml_get_f32_1d(x3.*.grad, 0)}); |
|
|
|
try std.testing.expect(c.ggml_get_f32_1d(y, 0) == 12.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 0) == 24.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 0) == 12.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x3.*.grad, 0) == 4.0); |
|
|
|
const g1 = x1.*.grad; |
|
const g2 = x2.*.grad; |
|
const g3 = x3.*.grad; |
|
|
|
const gbb = c.ggml_build_backward(ctx0, @constCast(&gb), true); |
|
|
|
c.ggml_graph_reset(@constCast(&gb)); |
|
_ = c.ggml_set_f32(g1.*.grad, 1.0); |
|
_ = c.ggml_set_f32(g2.*.grad, 1.0); |
|
_ = c.ggml_set_f32(g3.*.grad, 1.0); |
|
|
|
c.ggml_graph_compute_with_ctx(ctx0, @constCast(&gbb), n_threads); |
|
|
|
std.debug.print("H * [1, 1, 1] = [ {d:.6} {d:.6} {d:.6}]\n", |
|
.{ |
|
c.ggml_get_f32_1d(x1.*.grad, 0), |
|
c.ggml_get_f32_1d(x2.*.grad, 0), |
|
c.ggml_get_f32_1d(x3.*.grad, 0), |
|
}); |
|
|
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 0) == 56.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 0) == 34.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x3.*.grad, 0) == 12.0); |
|
|
|
c.ggml_graph_dump_dot(&gf, null, "test1-4-forward.dot"); |
|
c.ggml_graph_dump_dot(&gb, &gf, "test1-4-backward.dot"); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////// |
|
|
|
{ |
|
const x1 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 3); |
|
const x2 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 3); |
|
|
|
c.ggml_set_param(ctx0, x1); |
|
c.ggml_set_param(ctx0, x2); |
|
|
|
const y = c.ggml_sum(ctx0, c.ggml_mul(ctx0, x1, x2)); |
|
|
|
const gf = c.ggml_build_forward(y); |
|
const gb = c.ggml_build_backward(ctx0, @constCast(&gf), false); |
|
|
|
_ = c.ggml_set_f32(x1, 3.0); |
|
_ = c.ggml_set_f32(x2, 5.0); |
|
|
|
c.ggml_graph_reset(@constCast(&gf)); |
|
_ = c.ggml_set_f32(y.*.grad, 1.0); |
|
|
|
c.ggml_graph_compute_with_ctx(ctx0, @constCast(&gb), n_threads); |
|
|
|
std.debug.print("y = {d:.6}\n", .{c.ggml_get_f32_1d(y, 0)}); |
|
std.debug.print("df/dx1 = {d:.6} {d:.6} {d:.6}\n", |
|
.{ |
|
c.ggml_get_f32_1d(x1.*.grad, 0), |
|
c.ggml_get_f32_1d(x1.*.grad, 1), |
|
c.ggml_get_f32_1d(x1.*.grad, 2), |
|
}); |
|
std.debug.print("df/dx2 = {d:.6} {d:.6} {d:.6}\n", |
|
.{ |
|
c.ggml_get_f32_1d(x2.*.grad, 0), |
|
c.ggml_get_f32_1d(x2.*.grad, 1), |
|
c.ggml_get_f32_1d(x2.*.grad, 2), |
|
}); |
|
|
|
try std.testing.expect(c.ggml_get_f32_1d(y, 0) == 45.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 0) == 5.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 0) == 3.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 1) == 5.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 1) == 3.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 2) == 5.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 2) == 3.0); |
|
|
|
c.ggml_graph_dump_dot(&gf, null, "test1-5-forward.dot"); |
|
c.ggml_graph_dump_dot(&gb, &gf, "test1-5-backward.dot"); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////// |
|
|
|
{ |
|
const x1 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 3); |
|
const x2 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 3); |
|
|
|
c.ggml_set_param(ctx0, x1); |
|
c.ggml_set_param(ctx0, x2); |
|
|
|
const y = |
|
c.ggml_sum(ctx0, |
|
c.ggml_add(ctx0, |
|
c.ggml_mul(ctx0, x1, x2), |
|
c.ggml_mul(ctx0, |
|
c.ggml_repeat(ctx0, c.ggml_new_f32(ctx0, -2.0), x1), |
|
c.ggml_mul(ctx0, x1, x1) |
|
) |
|
) |
|
); |
|
|
|
const gf = c.ggml_build_forward(y); |
|
const gb = c.ggml_build_backward(ctx0, @constCast(&gf), false); |
|
|
|
_ = c.ggml_set_f32(x1, 3.0); |
|
_ = c.ggml_set_f32(x2, 5.0); |
|
|
|
c.ggml_graph_reset(@constCast(&gf)); |
|
_ = c.ggml_set_f32(y.*.grad, 1.0); |
|
|
|
c.ggml_graph_compute_with_ctx(ctx0, @constCast(&gb), n_threads); |
|
|
|
std.debug.print("y = {d:.6}\n", .{c.ggml_get_f32_1d(y, 0)}); |
|
std.debug.print("df/dx1 = {d:.6} {d:.6} {d:.6}\n", |
|
.{ |
|
c.ggml_get_f32_1d(x1.*.grad, 0), |
|
c.ggml_get_f32_1d(x1.*.grad, 1), |
|
c.ggml_get_f32_1d(x1.*.grad, 2), |
|
}); |
|
std.debug.print("df/dx2 = {d:.6} {d:.6} {d:.6}\n", |
|
.{ |
|
c.ggml_get_f32_1d(x2.*.grad, 0), |
|
c.ggml_get_f32_1d(x2.*.grad, 1), |
|
c.ggml_get_f32_1d(x2.*.grad, 2), |
|
}); |
|
|
|
try std.testing.expect(c.ggml_get_f32_1d(y, 0) == -9.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 0) == -7.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 1) == -7.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 2) == -7.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 0) == 3.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 1) == 3.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 2) == 3.0); |
|
|
|
c.ggml_graph_dump_dot(&gf, null, "test1-6-forward.dot"); |
|
c.ggml_graph_dump_dot(&gb, &gf, "test1-6-backward.dot"); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////// |
|
|
|
{ |
|
const x1 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 3); |
|
const x2 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 3); |
|
|
|
c.ggml_set_param(ctx0, x1); |
|
c.ggml_set_param(ctx0, x2); |
|
|
|
const y = |
|
c.ggml_sum(ctx0, |
|
c.ggml_sub(ctx0, |
|
c.ggml_mul(ctx0, x1, x2), |
|
c.ggml_mul(ctx0, |
|
c.ggml_mul(ctx0, x1, x1), |
|
c.ggml_repeat(ctx0, c.ggml_new_f32(ctx0, -2.0), x1) |
|
) |
|
) |
|
); |
|
|
|
const gf = c.ggml_build_forward(y); |
|
const gb = c.ggml_build_backward(ctx0, @constCast(&gf), false); |
|
|
|
_ = c.ggml_set_f32(x1, 3.0); |
|
_ = c.ggml_set_f32(x2, 5.0); |
|
|
|
c.ggml_graph_reset(@constCast(&gf)); |
|
_ = c.ggml_set_f32(y.*.grad, 1.0); |
|
|
|
c.ggml_graph_compute_with_ctx(ctx0, @constCast(&gb), n_threads); |
|
|
|
std.debug.print("y = {d:.6}\n", .{c.ggml_get_f32_1d(y, 0)}); |
|
std.debug.print("df/dx1 = {d:.6} {d:.6} {d:.6}\n", |
|
.{ |
|
c.ggml_get_f32_1d(x1.*.grad, 0), |
|
c.ggml_get_f32_1d(x1.*.grad, 1), |
|
c.ggml_get_f32_1d(x1.*.grad, 2), |
|
}); |
|
std.debug.print("df/dx2 = {d:.6} {d:.6} {d:.6}\n", |
|
.{ |
|
c.ggml_get_f32_1d(x2.*.grad, 0), |
|
c.ggml_get_f32_1d(x2.*.grad, 1), |
|
c.ggml_get_f32_1d(x2.*.grad, 2), |
|
}); |
|
|
|
try std.testing.expect(c.ggml_get_f32_1d(y, 0) == 99.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 0) == 17.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 1) == 17.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 2) == 17.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 0) == 3.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 1) == 3.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 2) == 3.0); |
|
|
|
c.ggml_graph_dump_dot(&gf, null, "test1-7-forward.dot"); |
|
c.ggml_graph_dump_dot(&gb, &gf, "test1-7-backward.dot"); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////// |
|
|
|
{ |
|
const x1 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 3); |
|
const x2 = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, 3); |
|
|
|
c.ggml_set_param(ctx0, x1); |
|
c.ggml_set_param(ctx0, x2); |
|
|
|
const y = |
|
c.ggml_abs(ctx0, |
|
c.ggml_sub(ctx0, x1, x2) |
|
); |
|
|
|
const gf = c.ggml_build_forward(y); |
|
const gb = c.ggml_build_backward(ctx0, @constCast(&gf), false); |
|
|
|
_ = c.ggml_set_f32(x1, 3.0); |
|
_ = c.ggml_set_f32(x2, 5.0); |
|
|
|
c.ggml_graph_reset(@constCast(&gf)); |
|
_ = c.ggml_set_f32(y.*.grad, 1.0); |
|
|
|
c.ggml_graph_compute_with_ctx(ctx0, @constCast(&gb), n_threads); |
|
|
|
std.debug.print("y = {d:.6}\n", .{c.ggml_get_f32_1d(y, 0)}); |
|
std.debug.print("df/dx1 = {d:.6} {d:.6} {d:.6}\n", |
|
.{ |
|
c.ggml_get_f32_1d(x1.*.grad, 0), |
|
c.ggml_get_f32_1d(x1.*.grad, 1), |
|
c.ggml_get_f32_1d(x1.*.grad, 2), |
|
}); |
|
std.debug.print("df/dx2 = {d:.6} {d:.6} {d:.6}\n", |
|
.{ |
|
c.ggml_get_f32_1d(x2.*.grad, 0), |
|
c.ggml_get_f32_1d(x2.*.grad, 1), |
|
c.ggml_get_f32_1d(x2.*.grad, 2), |
|
}); |
|
|
|
try std.testing.expect(c.ggml_get_f32_1d(y, 0) == 2.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 0) == -1.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 1) == -1.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 2) == -1.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 0) == 1.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 1) == 1.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 2) == 1.0); |
|
|
|
_ = c.ggml_set_f32(x1, 7.0); |
|
_ = c.ggml_set_f32(x2, 5.0); |
|
|
|
c.ggml_graph_reset(@constCast(&gf)); |
|
_ = c.ggml_set_f32(y.*.grad, 1.0); |
|
|
|
c.ggml_graph_compute_with_ctx(ctx0, @constCast(&gb), n_threads); |
|
|
|
std.debug.print("y = {d:.6}\n", .{c.ggml_get_f32_1d(y, 0)}); |
|
std.debug.print("df/dx1 = {d:.6} {d:.6} {d:.6}\n", |
|
.{ |
|
c.ggml_get_f32_1d(x1.*.grad, 0), |
|
c.ggml_get_f32_1d(x1.*.grad, 1), |
|
c.ggml_get_f32_1d(x1.*.grad, 2), |
|
}); |
|
std.debug.print("df/dx2 = {d:.6} {d:.6} {d:.6}\n", |
|
.{ |
|
c.ggml_get_f32_1d(x2.*.grad, 0), |
|
c.ggml_get_f32_1d(x2.*.grad, 1), |
|
c.ggml_get_f32_1d(x2.*.grad, 2), |
|
}); |
|
|
|
try std.testing.expect(c.ggml_get_f32_1d(y, 0) == 2.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 0) == 1.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 1) == 1.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x1.*.grad, 2) == 1.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 0) == -1.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 1) == -1.0); |
|
try std.testing.expect(c.ggml_get_f32_1d(x2.*.grad, 2) == -1.0); |
|
|
|
c.ggml_graph_dump_dot(&gf, null, "test1-8-forward.dot"); |
|
c.ggml_graph_dump_dot(&gb, &gf, "test1-8-backward.dot"); |
|
} |
|
|
|
_ = try std.io.getStdIn().reader().readByte(); |
|
} |
|
|