#include "ggml/ggml.h" #include "ggml/ggml-alloc.h" #include "ggml/ggml-backend.h" #ifdef GGML_USE_CUBLAS #include "ggml-cuda.h" #endif #ifdef GGML_USE_METAL #include "ggml-metal.h" #endif #include "common.h" #include "common-ggml.h" #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) { (void) level; (void) user_data; fputs(text, stderr); fflush(stderr); } typedef int32_t gpt2_pos; typedef int32_t gpt2_seq_id; // default hparams (GPT-2 117M) struct gpt2_hparams { int32_t n_vocab = 50257; int32_t n_ctx = 1024; int32_t n_embd = 768; int32_t n_head = 12; int32_t n_layer = 12; int32_t ftype = 1; float eps = 1e-5f; }; struct gpt2_layer { // normalization struct ggml_tensor * ln_1_g; struct ggml_tensor * ln_1_b; struct ggml_tensor * ln_2_g; struct ggml_tensor * ln_2_b; // attention struct ggml_tensor * c_attn_attn_w; struct ggml_tensor * c_attn_attn_b; struct ggml_tensor * c_attn_proj_w; struct ggml_tensor * c_attn_proj_b; // mlp struct ggml_tensor * c_mlp_fc_w; struct ggml_tensor * c_mlp_fc_b; struct ggml_tensor * c_mlp_proj_w; struct ggml_tensor * c_mlp_proj_b; }; struct gpt2_kv_cell { gpt2_pos pos = -1; gpt2_pos delta = 0; std::set seq_id; bool has_seq_id(const gpt2_seq_id & id) const { return seq_id.find(id) != seq_id.end(); } }; struct gpt2_kv_cache { // key + value memory struct ggml_tensor * k; struct ggml_tensor * v; // uint32_t head = 0; uint32_t size = 0; // computed before each graph build uint32_t n = 0; std::vector cells; ggml_backend_buffer_t buffer; }; struct gpt2_model { gpt2_hparams hparams; // normalization struct ggml_tensor * ln_f_g; struct ggml_tensor * ln_f_b; struct ggml_tensor * wte; // position embedding struct ggml_tensor * wpe; // token embedding struct ggml_tensor * lm_head; // language model head std::vector layers; gpt2_kv_cache kv_cache; struct ggml_context * ctx; ggml_backend_t backend = NULL; ggml_backend_buffer_t buffer_w; std::map tensors; }; // Input data for gpt2_decode // A gpt2_batch object can contain input about one or many sequences // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens // // - token : the token ids of the input (used when embd is NULL) // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL) // - pos : the positions of the respective token in the sequence // - seq_id : the sequence to which the respective token belongs // - logits : if zero, the logits for the respective token will not be output // struct gpt2_batch { int32_t n_tokens = -1; gpt_vocab::id * token = {}; float * embd = {}; gpt2_pos * pos = {}; gpt2_seq_id * seq_id = {}; int8_t * logits = {}; }; // load the model's weights from a file bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab, int n_ctx, int n_gpu_layers) { printf("%s: loading model from '%s'\n", __func__, fname.c_str()); auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); return false; } // verify magic { uint32_t magic; fin.read((char *) &magic, sizeof(magic)); if (magic != GGML_FILE_MAGIC) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); return false; } } // load hparams { auto & hparams = model.hparams; fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); fin.read((char *) &hparams.ftype, sizeof(hparams.ftype)); const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); printf("%s: n_embd = %d\n", __func__, hparams.n_embd); printf("%s: n_head = %d\n", __func__, hparams.n_head); printf("%s: n_layer = %d\n", __func__, hparams.n_layer); printf("%s: ftype = %d\n", __func__, hparams.ftype); printf("%s: qntvr = %d\n", __func__, qntvr); hparams.ftype %= GGML_QNT_VERSION_FACTOR; } // load vocab { int32_t n_vocab = 0; fin.read((char *) &n_vocab, sizeof(n_vocab)); if (n_vocab != model.hparams.n_vocab) { fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); return false; } std::string word; std::vector buf(128); for (int i = 0; i < n_vocab; i++) { uint32_t len; fin.read((char *) &len, sizeof(len)); buf.resize(len); fin.read((char *) buf.data(), len); word.assign(buf.data(), len); vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } } // for the big tensors, we have the option to store the data in 16-bit floats or quantized // in order to save memory and also to speed up the computation ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype)); if (wtype == GGML_TYPE_COUNT) { fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(), model.hparams.ftype); return false; } auto & ctx = model.ctx; size_t buffer_size = 0; { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; buffer_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g buffer_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b buffer_size += n_vocab*n_embd*ggml_type_sizef(wtype); // wte buffer_size += n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe buffer_size += n_vocab*n_embd*ggml_type_sizef(wtype); // lm_head buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b buffer_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w buffer_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b buffer_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w buffer_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b buffer_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w buffer_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b buffer_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w buffer_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b buffer_size += (6 + 12*n_layer)*128; // alignment overhead printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor)); printf("%s: backend buffer size = %6.2f MB\n", __func__, buffer_size/(1024.0*1024.0)); } // create the ggml context { size_t n_tensors = 2 + 6 + 12*model.hparams.n_layer; struct ggml_init_params params = { /*.mem_size =*/ ggml_tensor_overhead() * n_tensors, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; model.ctx = ggml_init(params); if (!model.ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return false; } } // initialize the backend #ifdef GGML_USE_CUBLAS if (n_gpu_layers > 0) { fprintf(stderr, "%s: using CUDA backend\n", __func__); model.backend = ggml_backend_cuda_init(); if (!model.backend) { fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); } } #endif #ifdef GGML_USE_METAL if (n_gpu_layers > 0) { fprintf(stderr, "%s: using Metal backend\n", __func__); ggml_metal_log_set_callback(ggml_log_callback_default, nullptr); model.backend = ggml_backend_metal_init(); if (!model.backend) { fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__); } } #endif if (!model.backend) { // fallback to CPU backend fprintf(stderr, "%s: using CPU backend\n", __func__); model.backend = ggml_backend_cpu_init(); } if (!model.backend) { fprintf(stderr, "%s: ggml_backend_cpu_init() failed\n", __func__); return false; } // allocate weights buffer model.buffer_w = ggml_backend_alloc_buffer(model.backend, buffer_size); // prepare memory for the weights { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; model.layers.resize(n_layer); model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx); model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); // map by name model.tensors["model/ln_f/g"] = model.ln_f_g; model.tensors["model/ln_f/b"] = model.ln_f_b; model.tensors["model/wte"] = model.wte; model.tensors["model/wpe"] = model.wpe; model.tensors["model/lm_head"] = model.lm_head; for (int i = 0; i < n_layer; ++i) { auto & layer = model.layers[i]; layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd); layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd); layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd); layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd); layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd); layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // map by name model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g; model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b; model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g; model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b; model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w; model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b; model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w; model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b; model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w; model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b; model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w; model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b; } } // override the default training context with the user-provided model.hparams.n_ctx = n_ctx; // key + value memory { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_mem = n_layer*n_ctx; const int n_elements = n_embd*n_mem; model.kv_cache.k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); model.kv_cache.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); model.kv_cache.head = 0; model.kv_cache.size = n_ctx; model.kv_cache.cells.resize(n_ctx); const size_t memory_size = ggml_nbytes(model.kv_cache.k) + ggml_nbytes(model.kv_cache.v); printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem); // create a backend buffer (can be in host or device memory) model.kv_cache.buffer = ggml_backend_alloc_buffer(model.backend, memory_size + 256); // allocate the tensors into the backend buffer { ggml_allocr * alloc = ggml_allocr_new_from_buffer(model.kv_cache.buffer); // this updates the pointers in the tensors to point to the correct location in the buffer // this is necessary since the ggml_context is .no_alloc == true // note that the buffer can actually be a device buffer, depending on the backend ggml_allocr_alloc(alloc, model.kv_cache.k); ggml_allocr_alloc(alloc, model.kv_cache.v); ggml_allocr_free(alloc); } } // load weights { ggml_allocr * alloc = ggml_allocr_new_from_buffer(model.buffer_w); size_t total_size = 0; bool has_lm_head = false; std::vector read_buf; while (true) { int32_t n_dims; int32_t length; int32_t ttype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ttype), sizeof(ttype)); if (fin.eof()) { break; } int32_t nelements = 1; int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); fin.read(&name[0], length); if (model.tensors.find(name) == model.tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str()); return false; } auto tensor = model.tensors[name]; ggml_set_name(tensor, name.c_str()); if (ggml_nelements(tensor) != nelements) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str()); return false; } if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n", __func__, name.c_str(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]); return false; } // for debugging if (0) { printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor)); } const size_t bpe = ggml_type_size(ggml_type(ttype)); if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", __func__, name.c_str(), ggml_nbytes(tensor), nelements*bpe); return false; } ggml_allocr_alloc(alloc, tensor); if (ggml_backend_is_cpu (model.backend) #ifdef GGML_USE_METAL || ggml_backend_is_metal(model.backend) #endif ) { // for the CPU and Metal backend, we can read directly into the tensor fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); } else { // read into a temporary buffer first, then copy to device memory read_buf.resize(ggml_nbytes(tensor)); fin.read(read_buf.data(), ggml_nbytes(tensor)); ggml_backend_tensor_set(tensor, read_buf.data(), 0, ggml_nbytes(tensor)); } // GPT-2 models share the WTE tensor as the LM head if (name == "model/wte" && has_lm_head == false) { //ggml_allocr_alloc(alloc, model.lm_head); //ggml_backend_tensor_copy(tensor, model.lm_head); model.lm_head = tensor; } if (name == "model/lm_head") { has_lm_head = true; } total_size += ggml_nbytes(tensor); } ggml_allocr_free(alloc); printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); } fin.close(); return true; } // build the computation graph struct ggml_cgraph * gpt2_graph( const gpt2_model & model, struct ggml_allocr * allocr, const gpt2_batch & batch) { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; const auto & kv_cache = model.kv_cache; const int32_t n_tokens = batch.n_tokens; const int32_t n_kv = ggml_allocr_is_measure(allocr) ? n_ctx : kv_cache.n; const int32_t kv_head = ggml_allocr_is_measure(allocr) ? n_ctx - n_tokens : kv_cache.head; // since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data static size_t buf_size = ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead(); static std::vector buf(buf_size); struct ggml_init_params params = { /*.mem_size =*/ buf_size, /*.mem_buffer =*/ buf.data(), /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph() }; struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * inpL; if (batch.token) { struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_allocr_alloc(allocr, inp_tokens); if (!ggml_allocr_is_measure(allocr)) { ggml_backend_tensor_set(inp_tokens, batch.token, 0, n_tokens*ggml_element_size(inp_tokens)); } struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_allocr_alloc(allocr, position); if (!ggml_allocr_is_measure(allocr)) { for (int i = 0; i < n_tokens; ++i) { int32_t v = batch.pos[i]; ggml_backend_tensor_set(position, &v, i*sizeof(int32_t), sizeof(v)); } } // wte + wpe inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.wte, inp_tokens), ggml_get_rows(ctx0, model.wpe, position)); } else { GGML_ASSERT(batch.embd); inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); ggml_allocr_alloc(allocr, inpL); if (!ggml_allocr_is_measure(allocr)) { ggml_backend_tensor_set(inpL, batch.embd, 0, n_tokens * n_embd * ggml_element_size(inpL)); } } struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_allocr_alloc(allocr, KQ_scale); if (!ggml_allocr_is_measure(allocr)) { float s = 1.0f/sqrtf(float(n_embd)/n_head); ggml_backend_tensor_set(KQ_scale, &s, 0, sizeof(s)); } // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); ggml_set_name(KQ_mask, "KQ_mask"); ggml_allocr_alloc(allocr, KQ_mask); if (!ggml_allocr_is_measure(allocr)) { std::vector data_buf(n_kv*n_tokens); const float neg_inf_v = -INFINITY; for (int h = 0; h < 1; ++h) { int h_offset = h*(n_kv*n_tokens); for (int j = 0; j < n_tokens; ++j) { const gpt2_pos pos = batch.pos[j]; const gpt2_seq_id seq_id = batch.seq_id[j]; for (int i = 0; i < n_kv; ++i) { if (!kv_cache.cells[i].has_seq_id(seq_id) || kv_cache.cells[i].pos > pos) { data_buf[h_offset + j*n_kv + i] = neg_inf_v; } } } } ggml_backend_tensor_set(KQ_mask, data_buf.data(), 0, data_buf.size() * sizeof(float)); } for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * cur; // norm { // [ 768, N] cur = ggml_norm(ctx0, inpL, hparams.eps); // cur = ln_1_g*cur + ln_1_b // [ 768, N] cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_g), model.layers[il].ln_1_b); } // attn // [2304, 768] - model.layers[il].c_attn_attn_w // [2304, 1] - model.layers[il].c_attn_attn_b // [ 768, n_tokens] - cur (in) // [2304, n_tokens] - cur (out) // // cur = attn_w*cur + attn_b // [2304, n_tokens] { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_attn_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].c_attn_attn_b); } // self-attention { struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd); struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*n_embd); struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*n_embd); // store key and value to memory if (n_tokens >= 1) { struct ggml_tensor * k = ggml_view_1d(ctx0, model.kv_cache.k, n_tokens*n_embd, (ggml_element_size(model.kv_cache.k)*n_embd)*(il*n_ctx + kv_head)); struct ggml_tensor * v = ggml_view_1d(ctx0, model.kv_cache.v, n_tokens*n_embd, (ggml_element_size(model.kv_cache.v)*n_embd)*(il*n_ctx + kv_head)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) // [64, N, 12] struct ggml_tensor * Q = ggml_permute(ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, n_tokens)), 0, 2, 1, 3); // K = Kmem.view(n_embd/n_head, n_head, n_kv).permute(0, 2, 1, 3) // [64, n_kv, 12] struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.kv_cache.k, n_kv*n_embd, il*n_ctx*ggml_element_size(model.kv_cache.k)*n_embd), n_embd/n_head, n_head, n_kv), 0, 2, 1, 3); // GG: flash attention //struct ggml_tensor * V = // ggml_cpy(ctx0, // ggml_permute(ctx0, // ggml_reshape_3d(ctx0, // ggml_view_1d(ctx0, model.kv_cache.v, n_kv*n_embd, il*n_ctx*ggml_element_size(model.kv_cache.v)*n_embd), // n_embd/n_head, n_head, n_kv), // 1, 2, 0, 3), // ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_embd/n_head, n_head)); //struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true); // K * Q // [n_kv, n_tokens, 12] struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) // [n_kv, n_tokens, 12] struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); // KQ_masked = mask_past(KQ_scaled) // [n_kv, n_tokens, 12] struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask); // KQ = soft_max(KQ_masked) // [n_kv, N, 12] struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); // V_trans = Vmem.view(n_embd/n_head, n_head, n_kv).permute(1, 2, 0, 3).contiguous() // [n_kv, 64, 12] struct ggml_tensor * V_trans = ggml_cpy(ctx0, ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.kv_cache.v, n_kv*n_embd, il*n_ctx*ggml_element_size(model.kv_cache.v)*n_embd), n_embd/n_head, n_head, n_kv), 1, 2, 0, 3), ggml_new_tensor_3d(ctx0, model.kv_cache.v->type, n_kv, n_embd/n_head, n_head)); // KQV = transpose(V) * KQ_soft_max // [64, n_tokens, 12] struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) // [64, 12, n_tokens] struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) // [768, n_tokens] cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens)); } // projection // [ 768, 768] - model.layers[il].c_attn_proj_w // [ 768, 1] - model.layers[il].c_attn_proj_b // [ 768, N] - cur (in) // [ 768, N] - cur (out) // // cur = proj_w*cur + proj_b // [768, N] { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_proj_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].c_attn_proj_b); } // add the input cur = ggml_add(ctx0, cur, inpL); struct ggml_tensor * inpFF = cur; // feed-forward network { // norm { cur = ggml_norm(ctx0, inpFF, hparams.eps); // cur = ln_2_g*cur + ln_2_b // [ 768, N] cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_g), model.layers[il].ln_2_b); } // fully connected // [3072, 768] - model.layers[il].c_mlp_fc_w // [3072, 1] - model.layers[il].c_mlp_fc_b // [ 768, N] - cur (in) // [3072, N] - cur (out) // // cur = fc_w*cur + fc_b // [3072, N] cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_fc_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].c_mlp_fc_b); // GELU activation // [3072, N] cur = ggml_gelu(ctx0, cur); // projection // [ 768, 3072] - model.layers[il].c_mlp_proj_w // [ 768, 1] - model.layers[il].c_mlp_proj_b // [3072, N] - cur (in) // [ 768, N] - cur (out) // // cur = proj_w*cur + proj_b // [768, N] cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_proj_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].c_mlp_proj_b); } // input for next layer inpL = ggml_add(ctx0, cur, inpFF); } // norm { // [ 768, N] inpL = ggml_norm(ctx0, inpL, hparams.eps); // inpL = ln_f_g*inpL + ln_f_b // [ 768, N] inpL = ggml_add(ctx0, ggml_mul(ctx0, inpL, model.ln_f_g), model.ln_f_b); } // inpL = WTE * inpL // [ 768, 50257] - model.lm_head // [ 768, N] - inpL inpL = ggml_mul_mat(ctx0, model.lm_head, inpL); // logits -> probs //inpL = ggml_soft_max(ctx0, inpL); ggml_build_forward_expand(gf, inpL); ggml_free(ctx0); return gf; } static void gpt2_kv_cache_seq_cp( struct gpt2_kv_cache & cache, gpt2_seq_id seq_id_src, gpt2_seq_id seq_id_dst, gpt2_pos p0, gpt2_pos p1) { if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.cells[i].seq_id.insert(seq_id_dst); } } } struct gpt2_batch gpt2_batch_init(int32_t n_tokens, int32_t embd) { gpt2_batch batch; if (embd) { batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd); } else { batch.token = (gpt_vocab::id *) malloc(sizeof(gpt_vocab::id) * n_tokens); } batch.pos = (gpt2_pos *) malloc(sizeof(gpt2_pos) * n_tokens); batch.seq_id = (gpt2_seq_id *) malloc(sizeof(gpt2_seq_id) * n_tokens); batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens); return batch; } void gpt2_batch_free(struct gpt2_batch batch) { if (batch.token) free(batch.token); if (batch.embd) free(batch.embd); if (batch.pos) free(batch.pos); if (batch.seq_id) free(batch.seq_id); if (batch.logits) free(batch.logits); } // Positive return values does not mean a fatal error, but rather a warning. // 0 - success // < 0 - error int gpt2_decode( struct gpt2_model & model, struct ggml_allocr * allocr, struct gpt2_batch batch, int n_threads, std::vector & logits) { const int32_t n_tokens = batch.n_tokens; const auto & hparams = model.hparams; const int n_vocab = hparams.n_vocab; if (n_tokens == 0) { printf("%s: n_tokens == 0", __func__); return -1; } GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); auto & cache = model.kv_cache; for (int i = 0; i < n_tokens; i++) { cache.cells[cache.head + i].pos = batch.pos[i]; cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i]); } cache.n = cache.head + n_tokens; // reset the allocator to free all the memory allocated during the previous inference ggml_allocr_reset(allocr); struct ggml_cgraph * gf = gpt2_graph(model, allocr, batch); // allocate tensors ggml_allocr_alloc_graph(allocr, gf); // run the computation if (ggml_backend_is_cpu(model.backend)) { ggml_backend_cpu_set_n_threads(model.backend, n_threads); } #ifdef GGML_USE_METAL if (ggml_backend_is_metal(model.backend)) { ggml_backend_metal_set_n_cb(model.backend, n_threads); } #endif ggml_backend_graph_compute(model.backend, gf); //if (n_past%100 == 0) { // ggml_graph_print (&gf); // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); //} // in this case, the output tensor is the last one in the graph struct ggml_tensor * inpL = gf->nodes[gf->n_nodes - 1]; if (batch.logits) { // return logits for all tokens logits.resize(n_vocab*n_tokens); for (int32_t i = 0; i < n_tokens; i++) { if (batch.logits[i] == 0) { continue; } ggml_backend_tensor_get(inpL, logits.data() + n_vocab*i, n_vocab*i*sizeof(float), sizeof(float)*n_vocab); } } else { // return result just for the last token logits.resize(n_vocab); ggml_backend_tensor_get(inpL, logits.data(), (n_vocab*(n_tokens-1))*sizeof(float), sizeof(float)*n_vocab); } // update the kv ring buffer cache.head += n_tokens; // ensure kv cache head points to a valid index. if (cache.head >= cache.size) { printf("%s: cache.head >= cache.size\n", __func__); return -2; } return 0; } int main(int argc, char ** argv) { ggml_time_init(); const int64_t t_main_start_us = ggml_time_us(); gpt_params params; if (gpt_params_parse(argc, argv, params) == false) { return 1; } if (params.seed < 0) { params.seed = time(NULL); } printf("%s: seed = %d\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.prompt.empty()) { params.prompt = gpt_random_prompt(rng); } int64_t t_load_us = 0; gpt_vocab vocab; gpt2_model model; // load the model { const int64_t t_start_us = ggml_time_us(); if (!gpt2_model_load(params.model, model, vocab, params.n_ctx, params.n_gpu_layers)) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return 1; } t_load_us = ggml_time_us() - t_start_us; test_gpt_tokenizer(vocab, params.token_test); } // tokenize the prompt std::vector embd_inp = ::gpt_tokenize(vocab, params.prompt); // keep this buffer alive while evaluating the model ggml_backend_buffer_t buf_compute; const int n_parallel = params.n_parallel; const int n_batch_max = std::max(embd_inp.size(), (size_t)n_parallel); // create a gpt2_batch // we use this object to submit token data for decoding gpt2_batch batch = gpt2_batch_init(n_batch_max, 0); // prepare required memory and allocate the compute buffer struct ggml_allocr * allocr = NULL; { // alignment required by the backend size_t align = ggml_backend_get_alignment(model.backend); allocr = ggml_allocr_new_measure(align); batch.n_tokens = n_batch_max; // create the worst case graph for memory usage estimation struct ggml_cgraph * gf = gpt2_graph(model, allocr, batch); // compute the required memory size_t mem_size = ggml_allocr_alloc_graph(allocr, gf); // recreate the allocator with the required memory ggml_allocr_free(allocr); buf_compute = ggml_backend_alloc_buffer(model.backend, mem_size); allocr = ggml_allocr_new_from_buffer(buf_compute); fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0/1024.0); } int64_t t_sample_us = 0; int64_t t_predict_us = 0; std::vector logits; // evaluate the initial prompt batch.n_tokens = embd_inp.size(); for (int32_t i = 0; i < batch.n_tokens; i++) { batch.token[i] = embd_inp[i]; batch.pos[i] = i; batch.seq_id[i] = 0; batch.logits[i] = false; } // gpt2_decode will output logits only for the last token of the prompt batch.logits[batch.n_tokens - 1] = true; if (gpt2_decode(model, allocr, batch, params.n_threads, logits) != 0) { printf("%s: gpt2_decode() failed\n", __func__); return 1; } // assign the system KV cache to all parallel sequences // this way, the parallel sequences will "reuse" the prompt tokens without having to copy them for (int32_t i = 1; i < n_parallel; ++i) { gpt2_kv_cache_seq_cp(model.kv_cache, 0, i, 0, batch.n_tokens); } if (n_parallel > 1) { printf("\n\n%s: generating %d sequences ...\n", __func__, n_parallel); } params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size()); printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str()); printf("%s: number of tokens in prompt = %zu, first 8 tokens: ", __func__, embd_inp.size()); for (int i = 0; i < std::min(8, (int) embd_inp.size()); i++) { printf("%d ", embd_inp[i]); } printf("\n\n"); std::vector streams(n_parallel); // remember the batch index of the last token for each parallel sequence // we need this to determine which logits to sample from std::vector i_batch(n_parallel, batch.n_tokens - 1); int n_cur = batch.n_tokens; int n_len = batch.n_tokens + params.n_predict; int n_decoded = 0; const int n_vocab = model.hparams.n_vocab; const int top_k = params.top_k; const float top_p = params.top_p; const float temp = params.temp; while (n_cur < n_len) { batch.n_tokens = 0; for (int32_t i = 0; i < n_parallel; ++i) { if (i_batch[i] < 0) { // the stream has already finished continue; } auto * logits_i = logits.data() + i_batch[i]*n_vocab; gpt_vocab::id id = 0; { const int64_t t_start_sample_us = ggml_time_us(); id = gpt_sample_top_k_top_p(vocab, logits_i, top_k, top_p, temp, rng); t_sample_us += ggml_time_us() - t_start_sample_us; } // is it an end of stream? -> mark the stream as finished if ((!params.ignore_eos && id == 50256) || n_cur == n_len - 1) { i_batch[i] = -1; printf("\n"); if (n_parallel > 1) { printf("%s: stream %d finished at n_cur = %d", __func__, i, n_cur); } continue; } auto& token = vocab.id_to_token[id]; if (n_parallel == 1) { printf("%s", token.c_str()); fflush(stdout); } streams[i] += token; // push this new token for next evaluation batch.token [batch.n_tokens] = id; batch.pos [batch.n_tokens] = n_cur; batch.seq_id[batch.n_tokens] = i; batch.logits[batch.n_tokens] = true; i_batch[i] = batch.n_tokens; batch.n_tokens += 1; n_decoded += 1; } // all streams are finished if (batch.n_tokens == 0) { break; } n_cur += 1; { const int64_t t_start_us = ggml_time_us(); // evaluate the current batch with the transformer model int ret_code = gpt2_decode(model, allocr, batch, params.n_threads, logits); if (ret_code != 0) { fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, ret_code); return 1; } t_predict_us += ggml_time_us() - t_start_us; } } if (n_parallel > 1) { printf("\n"); for (int32_t i = 0; i < n_parallel; ++i) { printf("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str()); } } // report timing { const int64_t t_main_end_us = ggml_time_us(); printf("\n\n"); printf("%s: n_decoded = %8d\n", __func__, n_decoded); printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f); printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); printf("%s: predict time = %8.2f ms\n", __func__, t_predict_us/1000.0f); printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); } gpt2_batch_free(batch); ggml_free(model.ctx); ggml_backend_buffer_free(model.buffer_w); ggml_backend_buffer_free(model.kv_cache.buffer); ggml_backend_buffer_free(buf_compute); ggml_backend_free(model.backend); return 0; }