# MNIST Examples for GGML These are simple examples of how to use GGML for inferencing. The first example uses convolutional neural network (CNN), the second one uses fully connected neural network. ## Building the examples ```bash git clone https://github.com/ggerganov/ggml cd ggml mkdir build && cd build cmake .. make -j4 mnist-cnn mnist ``` ## MNIST with CNN This implementation achieves ~99% accuracy on the MNIST test set. ### Training the model Use the `mnist-cnn.py` script to train the model and convert it to GGUF format: ``` $ python3 ../examples/mnist/mnist-cnn.py train mnist-cnn-model ... Keras model saved to 'mnist-cnn-model' ``` Convert the model to GGUF format: ``` $ python3 ../examples/mnist/mnist-cnn.py convert mnist-cnn-model ... Model converted and saved to 'mnist-cnn-model.gguf' ``` ### Running the example ```bash $ ./bin/mnist-cnn mnist-cnn-model.gguf ../examples/mnist/models/mnist/t10k-images.idx3-ubyte main: loaded model in 5.17 ms _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * * * * * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * * * _ _ _ * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * _ _ _ _ * * * * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * * * * * * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * * * * * * * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * * * * _ _ * * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * _ _ _ _ _ _ _ _ _ * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * * * * * * * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * * * * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ggml_graph_dump_dot: dot -Tpng mnist-cnn.dot -o mnist-cnn.dot.png && open mnist-cnn.dot.png main: predicted digit is 8 ``` Computation graph: ![mnist dot](https://user-images.githubusercontent.com/1991296/263763842-3b679b45-7ca1-4ee9-b19a-82e34396624f.png) ## MNIST with fully connected network A fully connected layer + relu, followed by a fully connected layer + softmax. ### Training the Model A Google Colab notebook for training a simple two-layer network to recognize digits is located here. You can use this to save a pytorch model to be converted to ggml format. [Colab](https://colab.research.google.com/drive/12n_8VNJnolBnX5dVS0HNWubnOjyEaFSb?usp=sharing) GGML "format" is whatever you choose for efficient loading. In our case, we just save the hyperparameters used plus the model weights and biases. Run convert-h5-to-ggml.py to convert your pytorch model. The output format is: - magic constant (int32) - repeated list of tensors - number of dimensions of tensor (int32) - tensor dimension (int32 repeated) - values of tensor (int32) Run ```convert-h5-to-ggml.py mnist_model.state_dict``` where `mnist_model.state_dict` is the saved pytorch model from the Google Colab. For quickstart, it is included in the mnist/models directory. ```bash mkdir -p models/mnist python3 ../examples/mnist/convert-h5-to-ggml.py ../examples/mnist/models/mnist/mnist_model.state_dict ``` ### Running the example ```bash ./bin/mnist ./models/mnist/ggml-model-f32.bin ../examples/mnist/models/mnist/t10k-images.idx3-ubyte ``` Computation graph: ![mnist dot](https://user-images.githubusercontent.com/1991296/231882071-84e29d53-b226-4d73-bdc2-5bd6dcb7efd1.png) ## Web demo The example can be compiled with Emscripten like this: ```bash cd examples/mnist emcc -I../../include -I../../include/ggml -I../../examples ../../src/ggml.c main.cpp -o web/mnist.js -s EXPORTED_FUNCTIONS='["_wasm_eval","_wasm_random_digit","_malloc","_free"]' -s EXPORTED_RUNTIME_METHODS='["ccall"]' -s ALLOW_MEMORY_GROWTH=1 --preload-file models/mnist ``` Online demo: https://mnist.ggerganov.com