// Use a pre-generated MNIST compute graph for inference on the M1 GPU via MPS // // You can generate a compute graph using the "mnist" tool: // // $ ./bin/mnist ./models/mnist/ggml-model-f32.bin ../examples/mnist/models/mnist/t10k-images.idx3-ubyte // // This command creates the "mnist.ggml" file, which contains the generated compute graph. // Now, you can re-use the compute graph on the GPU with the "mnist-mtl" tool: // // $ ./bin/mnist-mtl ./models/mnist/mnist.ggml ../examples/mnist/models/mnist/t10k-images.idx3-ubyte // #include "ggml/ggml.h" #include "main-mtl.h" #include #include #include #include #include #include // evaluate the MNIST compute graph // // - fname_cgraph: path to the compute graph // - digit: 784 pixel values // // returns 0 - 9 prediction int mnist_eval( const char * fname_cgraph, std::vector digit ) { // load the compute graph struct ggml_context * ctx_data = NULL; struct ggml_context * ctx_eval = NULL; struct ggml_cgraph gf = ggml_graph_import(fname_cgraph, &ctx_data, &ctx_eval); // allocate work context static size_t buf_size = 128ull*1024*1024; // TODO static void * buf = malloc(buf_size); struct ggml_init_params params = { /*.mem_size =*/ buf_size, /*.mem_buffer =*/ buf, /*.no_alloc =*/ false, }; struct ggml_context * ctx_work = ggml_init(params); // this allocates all Metal resources and memory buffers auto ctx_mtl = mnist_mtl_init(ctx_data, ctx_eval, ctx_work, &gf); int prediction = -1; for (int i = 0; i < 1; ++i) { struct ggml_tensor * input = ggml_graph_get_tensor(&gf, "input"); if (i % 2 == 0) { memcpy(input->data, digit.data(), ggml_nbytes(input)); } else { memset(input->data, 0, ggml_nbytes(input)); } // the actual inference happens here prediction = mnist_mtl_eval(ctx_mtl, &gf); } mnist_mtl_free(ctx_mtl); ggml_free(ctx_work); ggml_free(ctx_data); ggml_free(ctx_eval); return prediction; } int main(int argc, char ** argv) { srand(time(NULL)); ggml_time_init(); if (argc != 3) { fprintf(stderr, "Usage: %s models/mnist/mnist.ggml models/mnist/t10k-images.idx3-ubyte\n", argv[0]); exit(0); } uint8_t buf[784]; std::vector digit; // read a random digit from the test set { std::ifstream fin(argv[2], std::ios::binary); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, argv[2]); return 1; } // seek to a random digit: 16-byte header + 28*28 * (random 0 - 10000) fin.seekg(16 + 784 * (rand() % 10000)); fin.read((char *) &buf, sizeof(buf)); } // render the digit in ASCII { digit.resize(sizeof(buf)); for (int row = 0; row < 28; row++) { for (int col = 0; col < 28; col++) { fprintf(stderr, "%c ", (float)buf[row*28 + col] > 230 ? '*' : '_'); digit[row*28 + col] = ((float)buf[row*28 + col]); } fprintf(stderr, "\n"); } fprintf(stderr, "\n"); } const int prediction = mnist_eval(argv[1], digit); fprintf(stdout, "%s: predicted digit is %d\n", __func__, prediction); return 0; }