#import "main-mtl.h" #import "ggml/ggml.h" #import #import #import // TODO: couldn't get this to work //#define GGML_MTL_HEAP struct ggml_mtl_context { struct ggml_context * ctx_data; struct ggml_context * ctx_eval; struct ggml_context * ctx_work; id device; id queue; id library; #ifdef GGML_MTL_HEAP id heap_data; id heap_eval; #else id buffer_data; id buffer_eval; #endif id out; // custom kernels id function_add; id pipeline_add; id function_relu; id pipeline_relu; id function_soft_max; id pipeline_soft_max; }; // MSL code NSString * const msl_library_mnist = @"\ #include \n\ using namespace metal; \n\ \n\ #define MAX(x, y) ((x) > (y) ? (x) : (y)) \n\ \n\ constant int k_digits [[function_constant(0)]]; \n\ \n\ kernel void kernel_add( \n\ device const float * src0, \n\ device const float * src1, \n\ device float * dst, \n\ uint gid[[thread_position_in_grid]]) { \n\ dst[gid] = src0[gid] + src1[gid]; \n\ } \n\ \n\ kernel void kernel_relu( \n\ device const float * src, \n\ device float * dst, \n\ uint gid[[thread_position_in_grid]]) { \n\ dst[gid] = max(0.0f, src[gid]); \n\ } \n\ \n\ kernel void kernel_soft_max( \n\ device const float * src, \n\ device float * dst, \n\ uint gid[[thread_position_in_grid]]) { \n\ float max = 0.0f; \n\ for (int i = 0; i < k_digits; i++) { \n\ max = MAX(max, src[i]); \n\ } \n\ float sum = 0.0f; \n\ for (int i = 0; i < k_digits; i++) { \n\ dst[i] = exp(src[i] - max); \n\ sum += dst[i]; \n\ } \n\ for (int i = 0; i < k_digits; i++) { \n\ dst[i] /= sum; \n\ } \n\ } \n\ "; struct ggml_mtl_context * mnist_mtl_init( struct ggml_context * ctx_data, struct ggml_context * ctx_eval, struct ggml_context * ctx_work, struct ggml_cgraph * gf) { fprintf(stderr, "%s: allocating\n", __func__); struct ggml_mtl_context * ctx = malloc(sizeof(struct ggml_mtl_context)); ctx->ctx_data = ctx_data; ctx->ctx_eval = ctx_eval; ctx->ctx_work = ctx_work; ctx->device = MTLCreateSystemDefaultDevice(); ctx->queue = [ctx->device newCommandQueue]; // determine if we can use MPS if (MPSSupportsMTLDevice(ctx->device)) { fprintf(stderr, "%s: using MPS\n", __func__); } else { fprintf(stderr, "%s: not using MPS\n", __func__); GGML_ASSERT(false && "MPS not supported"); } // compile from source string and show compile log { NSError * error = nil; ctx->library = [ctx->device newLibraryWithSource:msl_library_mnist options:nil error:&error]; if (error) { fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); exit(1); } } // load kernels { const int k_digits = ggml_graph_get_tensor(gf, "probs")->ne[0]; MTLFunctionConstantValues * constants = [MTLFunctionConstantValues new]; [constants setConstantValue:&k_digits type:MTLDataTypeInt withName:@"k_digits"]; ctx->function_add = [ctx->library newFunctionWithName:@"kernel_add"]; ctx->pipeline_add = [ctx->device newComputePipelineStateWithFunction:ctx->function_add error:nil]; fprintf(stderr, "%s: loaded kernel_add: %p\n", __func__, (void *) ctx->pipeline_add); ctx->function_relu = [ctx->library newFunctionWithName:@"kernel_relu"]; ctx->pipeline_relu = [ctx->device newComputePipelineStateWithFunction:ctx->function_relu error:nil]; fprintf(stderr, "%s: loaded kernel_relu: %p\n", __func__, (void *) ctx->pipeline_relu); ctx->function_soft_max = [ctx->library newFunctionWithName:@"kernel_soft_max" constantValues:constants error:nil]; ctx->pipeline_soft_max = [ctx->device newComputePipelineStateWithFunction:ctx->function_soft_max error:nil]; fprintf(stderr, "%s: loaded kernel_soft_max: %p\n", __func__, (void *) ctx->pipeline_soft_max); } #ifdef GGML_MTL_HEAP // MTLHeap approach // pin ctx_data memory to GPU // use MTLStorageModeShared to allow us to initialize the weights from the CPU // TODO: how to use MTLStorageModeManaged? // TODO: see if we can avoid this copy somehow { const void * mem_buffer = ggml_get_mem_buffer(ctx_data); const size_t mem_size = ggml_get_mem_size(ctx_data); MTLHeapDescriptor * heap_desc = [MTLHeapDescriptor new]; heap_desc.storageMode = MTLStorageModeShared; heap_desc.size = mem_size; printf("heap_desc.size = %zu\n", mem_size); ctx->heap_data = [ctx->device newHeapWithDescriptor:heap_desc]; [ctx->heap_data setPurgeableState:MTLPurgeableStateNonVolatile]; // TODO: is this needed? ctx->heap_data.label = @"heap_data"; printf("ctx->heap_data.size = %zu\n", [ctx->heap_data size]); id buffer = [ctx->heap_data newBufferWithLength:mem_size options:MTLResourceStorageModeShared]; if (!buffer) { fprintf(stderr, "%s: error: failed to allocate buffer\n", __func__); exit(1); } // copy data from CPU to GPU memcpy([buffer contents], mem_buffer, mem_size); fprintf(stderr, "%s: allocated data heap, size = %zu\n", __func__, mem_size); } // pin ctx_eval memory to GPU // this heap will be used for the intermediate results of the evaluation { const size_t mem_size = ggml_get_mem_size(ctx_eval); MTLHeapDescriptor * heap_desc = [MTLHeapDescriptor new]; heap_desc.storageMode = MTLStorageModePrivate; // GPU only heap_desc.size = mem_size; ctx->heap_eval = [ctx->device newHeapWithDescriptor:heap_desc]; [ctx->heap_eval setPurgeableState:MTLPurgeableStateNonVolatile]; // TODO: is this needed? fprintf(stderr, "%s: allocated eval heap, size = %zu\n", __func__, mem_size); } #else // MTLBuffer approach // pin ctx_data memory to GPU // use MTLStorageModeShared to allow us to initialize the weights from the CPU // TODO: how to use MTLStorageModeManaged? // TODO: see if we can avoid this copy somehow { const void * mem_buffer = ggml_get_mem_buffer(ctx_data); const size_t mem_size = ggml_get_mem_size(ctx_data); ctx->buffer_data = [ctx->device newBufferWithBytes:mem_buffer length:mem_size options:MTLResourceStorageModeShared]; fprintf(stderr, "%s: allocated data buffer, size = %zu\n", __func__, mem_size); } // pin ctx_eval memory to GPU // this buffer will be used for the intermediate results of the evaluation { const size_t mem_size = ggml_get_mem_size(ctx_eval); ctx->buffer_eval = [ctx->device newBufferWithLength:mem_size options:MTLResourceStorageModePrivate]; fprintf(stderr, "%s: allocated eval buffer, size = %zu\n", __func__, mem_size); } #endif // allocate buffer for result extraction { const size_t mem_size = ggml_nbytes(gf->nodes[gf->n_nodes - 1]); ctx->out = [ctx->device newBufferWithLength:mem_size options:MTLResourceStorageModeShared]; fprintf(stderr, "%s: allocated out buffer, size = %zu\n", __func__, mem_size); } return ctx; } void mnist_mtl_free(struct ggml_mtl_context * ctx) { fprintf(stderr, "%s: deallocating\n", __func__); free(ctx); } #ifdef GGML_MTL_HEAP // make a view of the respective MTL heap id mnist_mtl_get_buffer_on_heap(struct ggml_mtl_context * ctx, struct ggml_tensor * t) { const int64_t offs_data = (int64_t) t->data - (int64_t) ggml_get_mem_buffer(ctx->ctx_data); const int64_t offs_eval = (int64_t) t->data - (int64_t) ggml_get_mem_buffer(ctx->ctx_eval); const bool is_data = (offs_eval < 0) || (offs_data >= 0 && offs_data < offs_eval); const size_t t_size = ggml_nbytes(t); const size_t t_offs = is_data ? offs_data : offs_eval; id result; if (is_data) { fprintf(stderr, "%s: data tensor '%16s', offs = %8ld, size = %8ld\n", __func__, t->name, t_offs, t_size); result = [ctx->heap_data newBufferWithLength:t_size options:MTLResourceStorageModeShared offset:t_offs]; } else { fprintf(stderr, "%s: eval tensor '%16s', offs = %8ld, size = %8ld\n", __func__, t->name, t_offs, t_size); result = [ctx->heap_eval newBufferWithLength:t_size options:MTLResourceStorageModePrivate offset:t_offs]; } if (result == nil) { fprintf(stderr, "%s: error: buffer is nil\n", __func__); GGML_ASSERT(false); } return result; } #else // get data / eval buffer + offset id mnist_mtl_get_buffer(struct ggml_mtl_context * ctx, struct ggml_tensor * t, size_t * offs) { const int64_t offs_data = (int64_t) t->data - (int64_t) ggml_get_mem_buffer(ctx->ctx_data); const int64_t offs_eval = (int64_t) t->data - (int64_t) ggml_get_mem_buffer(ctx->ctx_eval); const bool is_data = (offs_eval < 0) || (offs_data >= 0 && offs_data < offs_eval); const size_t t_size = ggml_nbytes(t); const size_t t_offs = is_data ? offs_data : offs_eval; id result; if (is_data) { fprintf(stderr, "%s: data tensor '%16s', offs = %8ld, size = %8ld\n", __func__, t->name, t_offs, t_size); result = ctx->buffer_data; } else { fprintf(stderr, "%s: eval tensor '%16s', offs = %8ld, size = %8ld\n", __func__, t->name, t_offs, t_size); result = ctx->buffer_eval; } if (result == nil) { fprintf(stderr, "%s: error: buffer is nil\n", __func__); GGML_ASSERT(false); } if (offs != nil) { *offs = t_offs; } return result; } #endif int mnist_mtl_eval( struct ggml_mtl_context * ctx, struct ggml_cgraph * gf) { fprintf(stderr, "%s: evaluating\n", __func__); id command_buffer = [ctx->queue commandBuffer]; id encoder = nil; size_t offs_src0; size_t offs_src1; size_t offs_dst; // copy the input data to the GPU { struct ggml_tensor * inp = ggml_graph_get_tensor(gf, "input"); id id_dst = mnist_mtl_get_buffer(ctx, inp, &offs_src0); memcpy((char *) id_dst.contents + offs_src0, inp->data, ggml_nbytes(inp)); } for (int i = 0; i < gf->n_nodes; ++i) { fprintf(stderr, "%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); switch (gf->nodes[i]->op) { case GGML_OP_ADD: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } id id_src0 = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[0], &offs_src0); id id_src1 = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[1], &offs_src1); id id_dst = mnist_mtl_get_buffer(ctx, gf->nodes[i], &offs_dst); [encoder setComputePipelineState:ctx->pipeline_add]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; const int64_t n = ggml_nelements(gf->nodes[i]); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_UNARY: switch (ggml_get_unary_op(gf->nodes[i])) { case GGML_UNARY_OP_RELU: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } id id_src = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[0], &offs_src0); id id_dst = mnist_mtl_get_buffer(ctx, gf->nodes[i], &offs_dst); [encoder setComputePipelineState:ctx->pipeline_relu]; [encoder setBuffer:id_src offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(gf->nodes[i]); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; default: { fprintf(stderr, "%s: node %3d, op = %8s, unary op %d not implemented\n", __func__, i, ggml_op_name(gf->nodes[i]->op), (int) ggml_get_unary_op(gf->nodes[i])); GGML_ASSERT(false); return -1; } break; } break; case GGML_OP_SOFT_MAX: { #if 0 // NOTE: MPSMatrixSoftMax is not working properly, probably there is a bug if (encoder != nil) { [encoder endEncoding]; encoder = nil; } // use MPSMatrixSoftMax id id_src = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src0, &offs_src0); id id_dst = mnist_mtl_get_buffer(ctx, gf->nodes[i], &offs_dst); MPSMatrixDescriptor * desc = [MPSMatrixDescriptor matrixDescriptorWithRows:1 columns:gf->nodes[i]->ne[0] rowBytes:gf->nodes[i]->nb[1] dataType:MPSDataTypeFloat32]; MPSMatrix * mat_src = [[MPSMatrix alloc] initWithBuffer:id_src offset:offs_src0 descriptor:desc]; MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst descriptor:desc]; MPSMatrixSoftMax * softmax = [[MPSMatrixSoftMax alloc] initWithDevice:ctx->device]; [softmax encodeToCommandBuffer:command_buffer inputMatrix:mat_src resultMatrix:mat_dst]; #else if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } id id_src = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[0], &offs_src0); id id_dst = mnist_mtl_get_buffer(ctx, gf->nodes[i], &offs_dst); [encoder setComputePipelineState:ctx->pipeline_soft_max]; [encoder setBuffer:id_src offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; #endif } break; case GGML_OP_MUL_MAT: { if (encoder != nil) { [encoder endEncoding]; encoder = nil; } // use MPSMatrixMultiplication id id_src0 = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[0], &offs_src0); id id_src1 = mnist_mtl_get_buffer(ctx, gf->nodes[i]->src[1], &offs_src1); id id_dst = mnist_mtl_get_buffer(ctx, gf->nodes[i], &offs_dst); const int64_t ncols0 = gf->nodes[i]->src[0]->ne[0]; const int64_t nrows0 = gf->nodes[i]->src[0]->ne[1]; const int64_t ncols1 = gf->nodes[i]->src[1]->ne[0]; const int64_t nrows1 = gf->nodes[i]->src[1]->ne[1]; const int64_t ncols2 = gf->nodes[i]->ne[0]; const int64_t nrows2 = gf->nodes[i]->ne[1]; GGML_ASSERT(ncols0 == ncols1); MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor matrixDescriptorWithRows:nrows0 columns:ncols0 rowBytes:gf->nodes[i]->src[0]->nb[1] dataType:MPSDataTypeFloat32]; MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor matrixDescriptorWithRows:nrows1 columns:ncols1 rowBytes:gf->nodes[i]->src[1]->nb[1] dataType:MPSDataTypeFloat32]; MPSMatrixDescriptor * desc2 = [MPSMatrixDescriptor matrixDescriptorWithRows:nrows2 columns:ncols2 rowBytes:gf->nodes[i]->nb[1] dataType:MPSDataTypeFloat32]; MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0 descriptor:desc0]; MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1 descriptor:desc1]; MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst descriptor:desc2]; MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc] initWithDevice:ctx->device transposeLeft:false transposeRight:true resultRows:nrows1 resultColumns:nrows0 interiorColumns:ncols0 alpha:1.0 beta:0.0]; [mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst]; } break; default: { fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); GGML_ASSERT(false); return -1; } } } // extract results from the GPU { if (encoder != nil) { [encoder endEncoding]; encoder = nil; } struct ggml_tensor * out = gf->nodes[gf->n_nodes - 1]; id id_src = mnist_mtl_get_buffer(ctx, out, &offs_src0); id id_dst = ctx->out; id encoder_blit = [command_buffer blitCommandEncoder]; [encoder_blit copyFromBuffer:id_src sourceOffset:offs_src0 toBuffer:id_dst destinationOffset:0 size:ggml_nbytes(out)]; [encoder_blit endEncoding]; } [command_buffer commit]; [command_buffer waitUntilCompleted]; { const double time_elapsed = [command_buffer GPUEndTime] - [command_buffer GPUStartTime]; fprintf(stderr, "%s: time elapsed = %f\n", __func__, time_elapsed); } // select the most probable digit int result = -1; { const float * probs = ctx->out.contents; float prob = probs[0]; for (int i = 0; i < 10; ++i) { fprintf(stderr, "%s: probs[%2d] = %f\n", __func__, i, probs[i]); if (probs[i] > prob) { result = i; prob = probs[i]; } } } return result; }