#!/usr/bin/env python3 import sys import gguf import numpy as np from tensorflow import keras from tensorflow.keras import layers def train(model_name): # Model / data parameters num_classes = 10 input_shape = (28, 28, 1) # Load the data and split it between train and test sets (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() # Scale images to the [0, 1] range x_train = x_train.astype("float32") / 255 x_test = x_test.astype("float32") / 255 # Make sure images have shape (28, 28, 1) x_train = np.expand_dims(x_train, -1) x_test = np.expand_dims(x_test, -1) print("x_train shape:", x_train.shape) print(x_train.shape[0], "train samples") print(x_test.shape[0], "test samples") # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = keras.Sequential( [ keras.Input(shape=input_shape), layers.Conv2D(32, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Flatten(), layers.Dropout(0.5), layers.Dense(num_classes, activation="softmax"), ] ) model.summary() batch_size = 128 epochs = 15 model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1) score = model.evaluate(x_test, y_test, verbose=0) print("Test loss:", score[0]) print("Test accuracy:", score[1]) model.save(model_name) print("Keras model saved to '" + model_name + "'") def convert(model_name): model = keras.models.load_model(model_name) gguf_model_name = model_name + ".gguf" gguf_writer = gguf.GGUFWriter(gguf_model_name, "mnist-cnn") kernel1 = model.layers[0].weights[0].numpy() kernel1 = np.moveaxis(kernel1, [2,3], [0,1]) kernel1 = kernel1.astype(np.float16) gguf_writer.add_tensor("kernel1", kernel1, raw_shape=(32, 1, 3, 3)) bias1 = model.layers[0].weights[1].numpy() bias1 = np.repeat(bias1, 26*26) gguf_writer.add_tensor("bias1", bias1, raw_shape=(1, 32, 26, 26)) kernel2 = model.layers[2].weights[0].numpy() kernel2 = np.moveaxis(kernel2, [0,1,2,3], [2,3,1,0]) kernel2 = kernel2.astype(np.float16) gguf_writer.add_tensor("kernel2", kernel2, raw_shape=(64, 32, 3, 3)) bias2 = model.layers[2].weights[1].numpy() bias2 = np.repeat(bias2, 11*11) gguf_writer.add_tensor("bias2", bias2, raw_shape=(1, 64, 11, 11)) dense_w = model.layers[-1].weights[0].numpy() dense_w = dense_w.transpose() gguf_writer.add_tensor("dense_w", dense_w, raw_shape=(10, 1600)) dense_b = model.layers[-1].weights[1].numpy() gguf_writer.add_tensor("dense_b", dense_b) gguf_writer.write_header_to_file() gguf_writer.write_kv_data_to_file() gguf_writer.write_tensors_to_file() gguf_writer.close() print("Model converted and saved to '{}'".format(gguf_model_name)) if __name__ == '__main__': if len(sys.argv) < 3: print("Usage: %s ".format(sys.argv[0])) sys.exit(1) if sys.argv[1] == 'train': train(sys.argv[2]) elif sys.argv[1] == 'convert': convert(sys.argv[2]) else: print("Usage: %s ".format(sys.argv[0])) sys.exit(1)