# SAM.cpp Inference of Meta's [Segment Anything Model](https://github.com/facebookresearch/segment-anything/) in pure C/C++ ## Description The example currently supports only the [ViT-B SAM model checkpoint](https://huggingface.co/facebook/sam-vit-base). ## Next steps - [X] Reduce memory usage by utilizing the new ggml-alloc - [X] Remove redundant graph nodes - [ ] Make inference faster - [X] Fix the difference in output masks compared to the PyTorch implementation - [X] Filter masks based on stability score - [ ] Add support for user input - [ ] Support F16 for heavy F32 ops - [ ] Test quantization - [X] Support bigger model checkpoints - [ ] GPU support ## Quick start ```bash git clone https://github.com/ggerganov/ggml cd ggml # Install Python dependencies python3 -m pip install -r requirements.txt # Convert PTH model to ggml python convert-pth-to-ggml.py examples/sam/sam_vit_b_01ec64.pth . 1 # Build ggml + examples mkdir build && cd build cmake .. && make -j4 # run inference ./bin/sam -t 16 -i ../img.jpg -m examples/sam/ggml-model-f16.bin ``` ## Downloading and converting the model checkpoints You can download a [model checkpoint](https://github.com/facebookresearch/segment-anything/tree/main#model-checkpoints) and convert it to `ggml` format using the script `convert-pth-to-ggml.py`: ``` # Convert PTH model to ggml python convert-pth-to-ggml.py examples/sam/sam_vit_b_01ec64.pth . 1 ``` ## Example output on M2 Ultra ``` $ ▶ make -j sam && time ./bin/sam -t 8 -i img.jpg [ 28%] Built target common [ 71%] Built target ggml [100%] Built target sam main: seed = 1693224265 main: loaded image 'img.jpg' (680 x 453) sam_image_preprocess: scale = 0.664062 main: preprocessed image (1024 x 1024) sam_model_load: loading model from 'models/sam-vit-b/ggml-model-f16.bin' - please wait ... sam_model_load: n_enc_state = 768 sam_model_load: n_enc_layer = 12 sam_model_load: n_enc_head = 12 sam_model_load: n_enc_out_chans = 256 sam_model_load: n_pt_embd = 4 sam_model_load: ftype = 1 sam_model_load: qntvr = 0 operator(): ggml ctx size = 202.32 MB sam_model_load: ...................................... done sam_model_load: model size = 185.05 MB / num tensors = 304 embd_img dims: 64 64 256 1 f32 First & Last 10 elements: -0.05117 -0.06408 -0.07154 -0.06991 -0.07212 -0.07690 -0.07508 -0.07281 -0.07383 -0.06779 0.01589 0.01775 0.02250 0.01675 0.01766 0.01661 0.01811 0.02051 0.02103 0.03382 sum: 12736.272313 Skipping mask 0 with iou 0.705935 below threshold 0.880000 Skipping mask 1 with iou 0.762136 below threshold 0.880000 Mask 2: iou = 0.947081, stability_score = 0.955437, bbox (371, 436), (144, 168) main: load time = 51.28 ms main: total time = 2047.49 ms real 0m2.068s user 0m16.343s sys 0m0.214s ``` Input point is (414.375, 162.796875) (currently hardcoded) Input image: ![llamas](https://user-images.githubusercontent.com/8558655/261301565-37b7bf4b-bf91-40cf-8ec1-1532316e1612.jpg) Output mask (mask_out_2.png in build folder): ![mask_glasses](https://user-images.githubusercontent.com/8558655/263706800-47eeea30-1457-4c87-938b-8f11536c5aa7.png) ## References - [ggml](https://github.com/ggerganov/ggml) - [SAM](https://segment-anything.com/) - [SAM demo](https://segment-anything.com/demo)