# Convert HF models to ggml format # import sys import struct import json import torch import numpy as np import re import os import argparse from transformers import AutoModelForCausalLM from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BloomForCausalLM # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) parser = argparse.ArgumentParser(description='Convert starcoder HF model to GGML') parser.add_argument('model_name_or_path', type=str, help='Name of model on HF hub, or local model folder') parser.add_argument('--outfile', type=str, default='ggml-model.bin', help='Path of GGML file to write.') parser.add_argument('--use_f32', action="store_true", help='Save GGML file in fp32') args = parser.parse_args() # use 16-bit or 32-bit floats use_f16 = not args.use_f32 fname_out = args.outfile fname_dir = os.path.dirname(fname_out) if fname_dir: os.makedirs(fname_dir, exist_ok=True) print("Loading model: ", args.model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) config = AutoConfig.from_pretrained(args.model_name_or_path, trust_remote_code=True) hparams = config.to_dict() model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, config=config, torch_dtype=torch.float16 if use_f16 else torch.float32, low_cpu_mem_usage=True, trust_remote_code=True, offload_state_dict=True) print("Model loaded: ", args.model_name_or_path) list_vars = model.state_dict() encoder = tokenizer.vocab # Add added_tokens (special tokens) to the encoder encoder.update(tokenizer.get_added_vocab()) print(hparams) print("Saving ggml model to: ", fname_out) fout = open(fname_out, "wb") fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex vocab_size = hparams["vocab_size"] fout.write(struct.pack("i", vocab_size)) # fout.write(struct.pack("i", len(encoder))) fout.write(struct.pack("i", hparams["n_positions"])) fout.write(struct.pack("i", hparams["n_embd"])) fout.write(struct.pack("i", hparams["n_head"])) fout.write(struct.pack("i", hparams["n_layer"])) fout.write(struct.pack("i", use_f16)) byte_encoder = bytes_to_unicode() byte_decoder = {v:k for k, v in byte_encoder.items()} fout.write(struct.pack("i", vocab_size)) counter = 0 # sort by value for key in sorted(encoder, key=encoder.get): text = bytearray([byte_decoder[c] for c in key]) fout.write(struct.pack("i", len(text))) fout.write(text) counter += 1 # TODO: Repeat last token until vocab_size while counter < vocab_size: fout.write(struct.pack("i", len(text))) fout.write(text) counter += 1 # assert counter == config.vocab_size for name in list_vars.keys(): data = list_vars[name].squeeze().numpy() print("Processing variable: " + name + " with shape: ", data.shape) # rename headers to keep compatibility if name == "transformer.ln_f.weight": name = "model/ln_f/g" elif name == "transformer.ln_f.bias": name = "model/ln_f/b" elif name == "transformer.wte.weight": name = "model/wte" elif name == "transformer.wpe.weight": name = "model/wpe" elif name == "lm_head.weight": name = "model/lm_head" elif re.match(r"transformer.h\.\d+\.ln_1\.weight", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/ln_1/g" elif re.match(r"transformer.h\.\d+\.ln_1\.bias", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/ln_1/b" elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.weight", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/attn/c_attn/w" elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.bias", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/attn/c_attn/b" elif re.match(r"transformer.h\.\d+\.attn\.c_proj\.weight", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/attn/c_proj/w" elif re.match(r"transformer.h.\d+.attn.c_proj.bias", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/attn/c_proj/b" elif re.match(r"transformer.h.\d+.ln_2.weight", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/ln_2/g" elif re.match(r"transformer.h.\d+.ln_2.bias", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/ln_2/b" elif re.match(r"transformer.h.\d+.mlp.c_fc.weight", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/mlp/c_fc/w" elif re.match(r"transformer.h.\d+.mlp.c_fc.bias", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/mlp/c_fc/b" elif re.match(r"transformer.h.\d+.mlp.c_proj.weight", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/mlp/c_proj/w" elif re.match(r"transformer.h.\d+.mlp.c_proj.bias", name): i = re.findall("\d+", name)[0] name = f"model/h{i}/mlp/c_proj/b" else: print("Unrecognized variable name. %s", name) # we don't need these if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"): print(" Skipping variable: " + name) continue n_dims = len(data.shape); # ftype == 0 -> float32, ftype == 1 -> float16 ftype = 0; if use_f16: if (name == "model/wte" or name == "model/lm_head" or name[-2:] == "/g" or name[-2:] == "/w") and n_dims == 2: print(" Converting to float16") data = data.astype(np.float16) ftype = 1 else: print(" Converting to float32") data = data.astype(np.float32) ftype = 0 "model/h.*/attn/c_attn/w" "model/h.*/attn/c_proj/w" "model/h.*/mlp/c_fc/w" "model/h.*/mlp/c_proj/w" if name[-14:] == "/attn/c_attn/w" or name[-14:] == "/attn/c_attn/b": print(" Duplicate K,V heads to use MHA instead of MQA") embed_dim = hparams["n_embd"] head_dim = embed_dim // hparams["n_head"] # ((n_heads + 2) * head_dim, hidden_dim) -> (3 * n_heads * head_dim, hidden_dim) q, k ,v = np.split(data, (hparams["n_head"] * head_dim, (hparams["n_head"] + 1) * head_dim), axis=0) # duplicate k, v along the first axis (head_dim, hidden_dim) -> (n_heads * head_dim, hidden_dim) if len(k.shape) == 2: k = np.tile(k, (hparams["n_head"], 1)) v = np.tile(v, (hparams["n_head"], 1)) elif len(k.shape) == 1: k = np.tile(k, (hparams["n_head"])) v = np.tile(v, (hparams["n_head"])) # concat q, k, v along the first axis (n_heads * head_dim, hidden_dim) -> (3 * n_heads * head_dim, hidden_dim) data = np.concatenate((q, k, v), axis=0) # header str = name.encode('utf-8') fout.write(struct.pack("iii", n_dims, len(str), ftype)) for i in range(n_dims): fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) fout.write(str); # data data.tofile(fout) fout.close() print("Done. Output file: " + fname_out) print("")