File size: 12,858 Bytes
2a26d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import argparse
import inspect
import json
import os
import shutil
from pathlib import Path
from typing import Any, Dict, List, Optional

import numpy as np
import torch
import transformers
from datasets import load_dataset

# from ..hparams import get_eval_args
# from ..model import load_model, load_tokenizer
from template import CHOICES, get_eval_template
from tqdm import tqdm, trange
from transformers import AutoTokenizer
from transformers.utils import cached_file
from vllm import LLM, SamplingParams

# from ..data import get_template_and_fix_tokenizer


SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"]


data_abs_dir = Path(__file__).parent / "data"


def create_dir(output_dir):
    if os.path.exists(output_dir):
        if not os.access(output_dir, os.W_OK):
            shutil.rmtree(output_dir)
            os.makedirs(output_dir)
            os.chmod(output_dir, 0o777)
            print("not write permission, makedir:", output_dir)
        else:
            print(f"{output_dir} exists!")
    else:
        os.makedirs(output_dir)
        os.chmod(output_dir, 0o777)
        print("makedir:", output_dir)


class Evaluator:
    def __init__(self, args) -> None:
        # self.model_args, self.data_args, self.eval_args, finetuning_args = (
        #     get_eval_args(args)
        # )
        self.args = args

        if not self.args.api:
            self.tokenizer = AutoTokenizer.from_pretrained(args.model_path)
            llm_args = {
                "model": args.model_path,
                "gpu_memory_utilization": 0.95,
                "trust_remote_code": True,
                "tensor_parallel_size": args.gpus_num,
                "dtype": "half",
                "max_model_len": 8192,
                "enforce_eager": True,
            }
            self.llm = LLM(**llm_args)
            self.sampling_params = SamplingParams(
                temperature=0,
                max_tokens=1024,
                top_p=0.95,
                stop_token_ids=[self.tokenizer.eos_token_id],
                logprobs=20,
            )

            self.tokenizer.padding_side = (
                "right"  # avoid overflow issue in batched inference for llama2
            )

            # self.template = get_template_and_fix_tokenizer(
            #     self.tokenizer, self.data_args.template
            # )

            self.choice_inputs = [
                self.tokenizer.encode(ch, add_special_tokens=False)[-1]
                for ch in CHOICES
            ]
            self.label_map = {}
            for label in ["A", "B", "C", "D"]:
                self.label_map[label] = self.tokenizer.convert_tokens_to_ids(label)
        self.eval_template = get_eval_template(args.lang)

    def get_client_res(self, example, open_ai_key=False):
        messages = example["input"]
        try:
            if open_ai_key:
                from openai import AzureOpenAI, OpenAI
                try:
                    api_key = os.environ["OPENAI_API_KEY"]
                except KeyError:
                    print("环境变量 OPENAI_API_KEY 未设置")
                    api_key = "default_value"
                client = AzureOpenAI(
                    api_key=api_key,
                    api_version="2024-07-01-preview",
                    azure_endpoint="https://zju-tablegpt.openai.azure.com/",
                    max_retries=3,
                )
                chat_response = client.chat.completions.create(
                    model="gpt-4o",
                    # model="gpt-4o-mini",
                    messages=messages,
                    top_p=0.95,
                    temperature=0,
                    max_tokens=1024,
                    # stop_token_ids=[self.tokenizer.eos_token_id],
                    logprobs=True,
                    top_logprobs=5,
                    timeout=40,
                )
            else:
                # Set OpenAI's API key and API base to use vLLM's API server.
                openai_api_key = "EMPTY"
                openai_api_base = "http://localhost:8080/v1"

                client = OpenAI(
                    api_key=openai_api_key,
                    base_url=openai_api_base,
                )
                chat_response = client.chat.completions.create(
                    model="qwen2-7b-sft",
                    messages=messages,
                    top_p=0.3,
                    temperature=0.1,
                    max_tokens=1024,
                )

            output = chat_response
        except Exception as e:
            print(f"An unexpected error occurred: {e}")
            output = None
        example["output"] = output
        return example

    def get_answer(self, output):
        import numpy as np

        candidate_logits = []
        for label in ["A", "B", "C", "D"]:
            try:
                candidate_logits.append(
                    output.outputs[0].logprobs[0][self.label_map[label]].logprob
                )
            except:
                # If an option is not in the first 1000, set its logit to -100
                # print(
                #     "Warning: {} not found. Artificially adding log prob of -100.".format(
                #         label
                #     )
                # )
                candidate_logits.append(-100)
        # 全是-100
        if len(set(candidate_logits)) == 1 and candidate_logits[0] == -100:
            print("Warning candidate_logits:", candidate_logits)
            return "N"
        candidate_logits = torch.tensor(candidate_logits)
        probs = torch.nn.functional.softmax(
            candidate_logits,
            dim=0,
        ).numpy()
        answer = {i: k for i, k in enumerate(["A", "B", "C", "D"])}[np.argmax(probs)]
        return answer

    def get_answer_gpt(self, chat_response):
        try:
            labels = ["A", "B", "C", "D"]
            top_logprobs = chat_response.choices[0].logprobs.content[0].top_logprobs
            for prob in top_logprobs:
                if prob.token in labels:
                    answer = prob.token
                    return answer
            return "Y"
        except Exception as e:
            print(f"get answer gpt error occurred: {e}")
            return "N"

    def eval(self) -> None:
        mapping = cached_file(
            path_or_repo_id=os.path.join(data_abs_dir, self.args.task),
            filename="mapping.json",
        )

        with open(mapping, "r", encoding="utf-8") as f:
            categorys: Dict[str, Dict[str, str]] = json.load(f)
        category_corrects = {subj: np.array([], dtype="bool") for subj in SUBJECTS}
        pbar = tqdm(categorys.keys(), desc="Processing subjects", position=0)
        results = {}
        for subject in pbar:
            if (
                "trust_remote_code" in inspect.signature(load_dataset).parameters
            ):  # for datasets==2.16.0
                kwargs = {"trust_remote_code": True}
            else:
                kwargs = {}

            dataset = load_dataset(
                path=os.path.join(data_abs_dir, self.args.task),
                name=subject,
                **kwargs,
            )
            pbar.set_postfix_str(categorys[subject]["name"])
            inputs, outputs, labels = [], [], []
            examples = []
            for i in trange(
                len(dataset[args.split]),
                desc="Formatting batches",
                position=1,
                leave=False,
            ):
                support_set = (
                    dataset["train"]
                    .shuffle()
                    .select(range(min(self.args.n_shot, len(dataset["train"]))))
                )
                messages = self.eval_template.format_example(
                    target_data=dataset[self.args.split][i],
                    support_set=support_set,
                    subject_name=categorys[subject]["name"],
                )
                if self.args.api:
                    inp = messages[0:-1]
                    inputs.append(inp)
                else:
                    inp = self.tokenizer.apply_chat_template(
                        messages[0:-1], tokenize=False, add_generation_prompt=True
                    )
                    inputs.append(inp)
                labels.append(messages[-1]["content"])
                examples.append({"input": inp, "label": messages[-1]["content"]})
            if self.args.api:
                from joblib import Parallel, delayed

                examples = Parallel(n_jobs=24)(
                    delayed(self.get_client_res)(example, open_ai_key=True)
                    for example in tqdm(examples)
                )

                # 请求错误的重新请求
                llm_outputs = []
                for example in examples:
                    if example["output"]==None:
                        example = self.get_client_res(example, open_ai_key=True)
                    llm_outputs.append(example)
                # 多进程请求后label与output的顺序乱了,需要重置
                labels = []
                outputs = []
                for example in llm_outputs:
                    answer = self.get_answer_gpt(example["output"])
                    outputs.append(answer)
                    labels.append(example["label"])
            else:
                llm_outputs = self.llm.generate(
                    inputs, sampling_params=self.sampling_params
                )
                for output in llm_outputs:
                    answer = self.get_answer(output)
                    outputs.append(answer)

            corrects = np.array(outputs) == np.array(labels)
            print("正确率:",corrects.sum()/len(corrects))
            category_name = categorys[subject]["category"]
            category_corrects[category_name] = np.concatenate(
                [category_corrects[category_name], corrects], axis=0
            )
            category_corrects["Average"] = np.concatenate(
                [category_corrects["Average"], corrects], axis=0
            )
            results[subject] = {str(i): outputs[i] for i in range(len(outputs))}

        pbar.close()
        self._save_results(category_corrects, results)

    def _save_results(
        self,
        category_corrects: Dict[str, np.ndarray],
        results: Dict[str, Dict[int, str]],
    ) -> None:
        score_info = "\n".join(
            [
                "{:>15}: {:.2f}".format(category_name, 100 * np.mean(category_correct))
                for category_name, category_correct in category_corrects.items()
                if len(category_correct)
            ]
        )
        print(score_info)
        if self.args.save_dir is not None:
            # os.makedirs(self.args.save_dir, exist_ok=True)
            create_dir(self.args.save_dir)
            with open(
                os.path.join(self.args.save_dir, f"results_{args.task}.json"),
                "w",
                encoding="utf-8",
                newline="\n",
            ) as f:
                json.dump(results, f, indent=2)

            with open(
                os.path.join(self.args.save_dir, f"results_{args.task}.log"),
                "w",
                encoding="utf-8",
                newline="\n",
            ) as f:
                f.write(score_info)


def run_eval(args) -> None:
    evalutor = Evaluator(args)
    evalutor.eval()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_path",
        type=str,
        help="model name or path",
        default="/data0/pretrained-models/Qwen2-7B-Instruct",
    )
    parser.add_argument(
        "--gpus_num", type=int, default=1, help="the number of GPUs you want to use."
    )
    parser.add_argument(
        "--output_path",
        type=str,
        help="output path of your generation",
        default="output/result_mmlu.json",
    )
    parser.add_argument(
        "--lang", type=str, help="prompt langauge", default="zh", choices=["zh", "en"]
    )
    parser.add_argument("--api", action="store_true", help="infer api type")
    parser.add_argument(
        "--task",
        type=str,
        help="eval task",
        default="cmmlu",
        choices=["cmmlu", "mmlu", "ceval"],
    )
    parser.add_argument(
        "--split",
        type=str,
        help="eval data split",
        default="test",
        choices=["test", "validation"],
    )
    parser.add_argument("--n_shot", type=int, help="n shot", default=5)
    parser.add_argument("--seed", type=int, help="seed", default=42)
    parser.add_argument("--save_dir", type=str, help="save dir", default="output")
    args = parser.parse_args()

    os.environ["TOKENIZERS_PARALLELISM"] = "false"
    transformers.set_seed(args.seed)
    run_eval(args)