File size: 12,858 Bytes
2a26d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import argparse
import inspect
import json
import os
import shutil
from pathlib import Path
from typing import Any, Dict, List, Optional
import numpy as np
import torch
import transformers
from datasets import load_dataset
# from ..hparams import get_eval_args
# from ..model import load_model, load_tokenizer
from template import CHOICES, get_eval_template
from tqdm import tqdm, trange
from transformers import AutoTokenizer
from transformers.utils import cached_file
from vllm import LLM, SamplingParams
# from ..data import get_template_and_fix_tokenizer
SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"]
data_abs_dir = Path(__file__).parent / "data"
def create_dir(output_dir):
if os.path.exists(output_dir):
if not os.access(output_dir, os.W_OK):
shutil.rmtree(output_dir)
os.makedirs(output_dir)
os.chmod(output_dir, 0o777)
print("not write permission, makedir:", output_dir)
else:
print(f"{output_dir} exists!")
else:
os.makedirs(output_dir)
os.chmod(output_dir, 0o777)
print("makedir:", output_dir)
class Evaluator:
def __init__(self, args) -> None:
# self.model_args, self.data_args, self.eval_args, finetuning_args = (
# get_eval_args(args)
# )
self.args = args
if not self.args.api:
self.tokenizer = AutoTokenizer.from_pretrained(args.model_path)
llm_args = {
"model": args.model_path,
"gpu_memory_utilization": 0.95,
"trust_remote_code": True,
"tensor_parallel_size": args.gpus_num,
"dtype": "half",
"max_model_len": 8192,
"enforce_eager": True,
}
self.llm = LLM(**llm_args)
self.sampling_params = SamplingParams(
temperature=0,
max_tokens=1024,
top_p=0.95,
stop_token_ids=[self.tokenizer.eos_token_id],
logprobs=20,
)
self.tokenizer.padding_side = (
"right" # avoid overflow issue in batched inference for llama2
)
# self.template = get_template_and_fix_tokenizer(
# self.tokenizer, self.data_args.template
# )
self.choice_inputs = [
self.tokenizer.encode(ch, add_special_tokens=False)[-1]
for ch in CHOICES
]
self.label_map = {}
for label in ["A", "B", "C", "D"]:
self.label_map[label] = self.tokenizer.convert_tokens_to_ids(label)
self.eval_template = get_eval_template(args.lang)
def get_client_res(self, example, open_ai_key=False):
messages = example["input"]
try:
if open_ai_key:
from openai import AzureOpenAI, OpenAI
try:
api_key = os.environ["OPENAI_API_KEY"]
except KeyError:
print("环境变量 OPENAI_API_KEY 未设置")
api_key = "default_value"
client = AzureOpenAI(
api_key=api_key,
api_version="2024-07-01-preview",
azure_endpoint="https://zju-tablegpt.openai.azure.com/",
max_retries=3,
)
chat_response = client.chat.completions.create(
model="gpt-4o",
# model="gpt-4o-mini",
messages=messages,
top_p=0.95,
temperature=0,
max_tokens=1024,
# stop_token_ids=[self.tokenizer.eos_token_id],
logprobs=True,
top_logprobs=5,
timeout=40,
)
else:
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8080/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
chat_response = client.chat.completions.create(
model="qwen2-7b-sft",
messages=messages,
top_p=0.3,
temperature=0.1,
max_tokens=1024,
)
output = chat_response
except Exception as e:
print(f"An unexpected error occurred: {e}")
output = None
example["output"] = output
return example
def get_answer(self, output):
import numpy as np
candidate_logits = []
for label in ["A", "B", "C", "D"]:
try:
candidate_logits.append(
output.outputs[0].logprobs[0][self.label_map[label]].logprob
)
except:
# If an option is not in the first 1000, set its logit to -100
# print(
# "Warning: {} not found. Artificially adding log prob of -100.".format(
# label
# )
# )
candidate_logits.append(-100)
# 全是-100
if len(set(candidate_logits)) == 1 and candidate_logits[0] == -100:
print("Warning candidate_logits:", candidate_logits)
return "N"
candidate_logits = torch.tensor(candidate_logits)
probs = torch.nn.functional.softmax(
candidate_logits,
dim=0,
).numpy()
answer = {i: k for i, k in enumerate(["A", "B", "C", "D"])}[np.argmax(probs)]
return answer
def get_answer_gpt(self, chat_response):
try:
labels = ["A", "B", "C", "D"]
top_logprobs = chat_response.choices[0].logprobs.content[0].top_logprobs
for prob in top_logprobs:
if prob.token in labels:
answer = prob.token
return answer
return "Y"
except Exception as e:
print(f"get answer gpt error occurred: {e}")
return "N"
def eval(self) -> None:
mapping = cached_file(
path_or_repo_id=os.path.join(data_abs_dir, self.args.task),
filename="mapping.json",
)
with open(mapping, "r", encoding="utf-8") as f:
categorys: Dict[str, Dict[str, str]] = json.load(f)
category_corrects = {subj: np.array([], dtype="bool") for subj in SUBJECTS}
pbar = tqdm(categorys.keys(), desc="Processing subjects", position=0)
results = {}
for subject in pbar:
if (
"trust_remote_code" in inspect.signature(load_dataset).parameters
): # for datasets==2.16.0
kwargs = {"trust_remote_code": True}
else:
kwargs = {}
dataset = load_dataset(
path=os.path.join(data_abs_dir, self.args.task),
name=subject,
**kwargs,
)
pbar.set_postfix_str(categorys[subject]["name"])
inputs, outputs, labels = [], [], []
examples = []
for i in trange(
len(dataset[args.split]),
desc="Formatting batches",
position=1,
leave=False,
):
support_set = (
dataset["train"]
.shuffle()
.select(range(min(self.args.n_shot, len(dataset["train"]))))
)
messages = self.eval_template.format_example(
target_data=dataset[self.args.split][i],
support_set=support_set,
subject_name=categorys[subject]["name"],
)
if self.args.api:
inp = messages[0:-1]
inputs.append(inp)
else:
inp = self.tokenizer.apply_chat_template(
messages[0:-1], tokenize=False, add_generation_prompt=True
)
inputs.append(inp)
labels.append(messages[-1]["content"])
examples.append({"input": inp, "label": messages[-1]["content"]})
if self.args.api:
from joblib import Parallel, delayed
examples = Parallel(n_jobs=24)(
delayed(self.get_client_res)(example, open_ai_key=True)
for example in tqdm(examples)
)
# 请求错误的重新请求
llm_outputs = []
for example in examples:
if example["output"]==None:
example = self.get_client_res(example, open_ai_key=True)
llm_outputs.append(example)
# 多进程请求后label与output的顺序乱了,需要重置
labels = []
outputs = []
for example in llm_outputs:
answer = self.get_answer_gpt(example["output"])
outputs.append(answer)
labels.append(example["label"])
else:
llm_outputs = self.llm.generate(
inputs, sampling_params=self.sampling_params
)
for output in llm_outputs:
answer = self.get_answer(output)
outputs.append(answer)
corrects = np.array(outputs) == np.array(labels)
print("正确率:",corrects.sum()/len(corrects))
category_name = categorys[subject]["category"]
category_corrects[category_name] = np.concatenate(
[category_corrects[category_name], corrects], axis=0
)
category_corrects["Average"] = np.concatenate(
[category_corrects["Average"], corrects], axis=0
)
results[subject] = {str(i): outputs[i] for i in range(len(outputs))}
pbar.close()
self._save_results(category_corrects, results)
def _save_results(
self,
category_corrects: Dict[str, np.ndarray],
results: Dict[str, Dict[int, str]],
) -> None:
score_info = "\n".join(
[
"{:>15}: {:.2f}".format(category_name, 100 * np.mean(category_correct))
for category_name, category_correct in category_corrects.items()
if len(category_correct)
]
)
print(score_info)
if self.args.save_dir is not None:
# os.makedirs(self.args.save_dir, exist_ok=True)
create_dir(self.args.save_dir)
with open(
os.path.join(self.args.save_dir, f"results_{args.task}.json"),
"w",
encoding="utf-8",
newline="\n",
) as f:
json.dump(results, f, indent=2)
with open(
os.path.join(self.args.save_dir, f"results_{args.task}.log"),
"w",
encoding="utf-8",
newline="\n",
) as f:
f.write(score_info)
def run_eval(args) -> None:
evalutor = Evaluator(args)
evalutor.eval()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
help="model name or path",
default="/data0/pretrained-models/Qwen2-7B-Instruct",
)
parser.add_argument(
"--gpus_num", type=int, default=1, help="the number of GPUs you want to use."
)
parser.add_argument(
"--output_path",
type=str,
help="output path of your generation",
default="output/result_mmlu.json",
)
parser.add_argument(
"--lang", type=str, help="prompt langauge", default="zh", choices=["zh", "en"]
)
parser.add_argument("--api", action="store_true", help="infer api type")
parser.add_argument(
"--task",
type=str,
help="eval task",
default="cmmlu",
choices=["cmmlu", "mmlu", "ceval"],
)
parser.add_argument(
"--split",
type=str,
help="eval data split",
default="test",
choices=["test", "validation"],
)
parser.add_argument("--n_shot", type=int, help="n shot", default=5)
parser.add_argument("--seed", type=int, help="seed", default=42)
parser.add_argument("--save_dir", type=str, help="save dir", default="output")
args = parser.parse_args()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
transformers.set_seed(args.seed)
run_eval(args)
|