File size: 8,124 Bytes
2a26d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import os
import re
import json
import pandas as pd
import matplotlib.pyplot as plt
from typing import Any
from utils import timeout
from table_bench_eval.custom_python_tool import CustomPythonTool, sanitize_input
from langchain_experimental.tools.python.tool import PythonAstREPLTool
CODE_PREFIX = """import matplotlib.pyplot as plt
from mplfonts import use_font
import pandas as pd
import numpy as np
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
# Fixing Chinese font issues
use_font("Noto Serif CJK SC")\n"""
def valid_path(path):
dir = os.path.dirname(path)
if not os.path.exists(dir):
os.makedirs(dir)
def pre_save_table_to_csv(table):
table_json = []
for item in table['data']:
row_data = {}
for i in range(len(table['columns'])):
row_data[table['columns'][i]] = item[i]
table_json.append(row_data)
df = pd.DataFrame(table_json)
df.to_csv('table.csv', index=False)
def extract_final_answer(text):
match = re.search(r'Final Answer:\s*(.*)', text)
if match:
return match.group(1).strip()
return ""
def parse_final_answer_prediction(prediction):
pattern = r"Final Answer: (.+)"
try:
match = re.search(pattern, prediction, re.IGNORECASE)
if match:
return match.group(1)
else:
return ''
except Exception:
return ''
def read_json_file(path, filter_func=None):
if os.path.exists(path):
with open(path, 'r', encoding='utf-8') as f:
try:
json_data = json.load(f)
if filter_func is not None:
json_data = list(filter(filter_func, json_data))
return json_data
except Exception as e:
f.seek(0)
lines = f.readlines()
json_list = [json.loads(line.strip(
)) for line in lines if filter_func is None or filter_func(json.loads(line.strip()))]
return json_list
else:
return None
def write_json_to_file(path: str, data: dict, is_json_line: bool = False) -> None:
valid_path(path)
with open(path, 'w', encoding='utf-8') as f:
if is_json_line:
for line in data:
f.write(json.dumps(line, ensure_ascii=False) + '\n')
else:
f.write(json.dumps(data, ensure_ascii=False, indent=4))
def parse_python_code(prediction):
pattern1 = r"```python\n(.*?)```"
matches = re.findall(pattern1, prediction, flags=re.S)
if matches:
return matches[-1]
else:
code = ""
if code == "":
match = re.search(r'Action:\s*(.*)\n', prediction)
if match:
return match.group(1)
else:
return code
def get_tool(df: Any, df_names=None):
"""
Define python code execute tool
:param df: List[pd.DataFrame] or pd.DataFrame
:return Runnable
"""
tool = PythonAstREPLTool()
if df_names == None:
if isinstance(df, pd.DataFrame):
locals = {"df": df}
else:
locals = {}
for i, dataframe in enumerate(df):
locals[f"df{i + 1}"] = dataframe
else:
locals = {}
for i, dataframe in enumerate(df):
locals[df_names[i]] = dataframe
tool.locals = locals
tool.globals = tool.locals
return tool
def ensure_last_line_print(code):
# 将代码按行分割
lines = code.strip().split('\n')
# 获取最后一行代码
last_line = lines[-1].strip()
# 检查最后一行是否已经包含 print 函数
if not last_line.startswith('print'):
# 尝试提取最后一行中的变量名或表达式
# 这里假设最后一行是简单的变量赋值或表达式
last_line_variable = last_line
# 将变量包裹在print中
lines[-1] = f'print({last_line_variable})'
# 将所有行重新组合成代码字符串
modified_code = '\n'.join(lines)
return modified_code
def build_chart_eval_code(sample):
answer = sample['answer']
chart_type = sample['chart_type']
prediction = sample['raw_generation']
python_code = parse_python_code(prediction)
python_code = CODE_PREFIX + python_code
# TestCase
eval_code = '''
if chart_type == 'line':
y_predictions = get_line_y_predictions(plt)
if chart_type == 'bar':
y_predictions = get_bar_y_predictions(plt)
if chart_type == 'hbar':
y_predictions = get_hbar_y_predictions(plt)
if chart_type == 'pie':
y_predictions = get_pie_y_predictions(plt)
if chart_type == 'area':
y_predictions = get_area_y_predictions(plt)
if chart_type == 'radar':
y_predictions = get_radar_y_predictions(plt)
if chart_type == 'scatter':
y_predictions = get_scatter_y_predictions(plt)
if chart_type == 'waterfall':
y_predictions = get_waterfall_y_predictions(plt)
if chart_type == 'pie':
print(compute_pie_chart_metric(y_references, y_predictions))
else:
print(compute_general_chart_metric(y_references, y_predictions))
'''
# chart_eval_code = f'from chat_metric_utils import *\n{python_code}\n{answer}\nchart_type="{chart_type}"\n{eval_code}'
# chart_eval_code = f'{python_code}\ny_references={answer}\nchart_type="{chart_type}"\n{eval_code}'
y_ref_str = f"{answer}"
chart_type_str = f"chart_type = '{chart_type}'"
chart_eval_code = "\n".join([python_code, y_ref_str, chart_type_str, eval_code])
if python_code == '':
return '', ''
return python_code, chart_eval_code
def parse_code_then_exec(prediction):
ecr_1 = False
python_code = parse_python_code(prediction)
if python_code == "":
print("raw_prediction:", prediction)
python_code = ensure_last_line_print(python_code)
python_code = CODE_PREFIX + python_code
python_code = sanitize_input(python_code)
df = pd.read_csv("table.csv")
exec_tool = get_tool(df)
try:
with timeout(10):
observe = exec_tool.run(python_code) # 需要监控超时的代码块
# print("Observe:", observe.strip())
# if not execution_eval(observe):
# observe = ""
if isinstance(observe, pd.DataFrame):
observe = observe.head().to_markdown(index=False)
else:
observe = str(observe)
ecr_1 = True
except Exception as e:
observe = e
if observe != "":
observe = observe.strip()
# if not execution_eval(observe):
# observe = ""
return observe, ecr_1
def execution_eval(observe: str) -> bool:
"""
Test whether the code generated by eval_llm can be executed.
:param output: output code of llm generation
:return: True or False
"""
if observe == "": # 空结果直接返回false
return False
# 只要执行结果中不出现error 或者 exception, 就认为代码可执行
pattern = re.compile(r"error|exception", re.IGNORECASE)
try:
res = not pattern.search(observe)
except:
res = True
return res
def parse_chart_code_then_exec(sample):
ecr_1 = False
python_code, chart_eval_code = build_chart_eval_code(sample)
df = pd.read_csv("table.csv")
python_code = sanitize_input(python_code)
chart_eval_code = sanitize_input(chart_eval_code)
exec_tool = get_tool(df)
try:
with timeout(10):
_ = exec_tool.run(python_code)
ecr_1 = True
except Exception as e:
pass
try:
with timeout(10):
# print("Chart eval code: ", chart_eval_code)
observe = exec_tool.run(chart_eval_code)
print("Observe:", observe)
# if not execution_eval(observe):
# observe = ""
if isinstance(observe, pd.DataFrame):
observe = observe.head().to_markdown(index=False)
else:
observe = str(observe)
except Exception as e:
observe = str(e)
observe = observe.strip()
plt.close("all")
return observe, ecr_1
|