File size: 6,369 Bytes
2a26d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import sys
import json
import argparse
import sqlite3
from tqdm import tqdm
from joblib import Parallel, delayed
from func_timeout import func_timeout, FunctionTimedOut


def load_json(dir):
    with open(dir, 'r') as j:
        contents = json.loads(j.read())
    return contents

def result_callback(result):
    exec_result.append(result)


def execute_sql(predicted_sql,ground_truth, db_path):
    conn = sqlite3.connect(db_path)
    # Connect to the database
    cursor = conn.cursor()
    cursor.execute(predicted_sql)
    predicted_res = cursor.fetchall()
    cursor.execute(ground_truth)
    ground_truth_res = cursor.fetchall()
    res = 0
    if set(predicted_res) == set(ground_truth_res):
        res = 1
    res_dict = {"res": res, "predicted_res": list(set(predicted_res)), "ground_truth_res": list(set(ground_truth_res))}
    return res_dict



def execute_model(sql_pair, db_place, idx, meta_time_out):
    predicted_sql,ground_truth = sql_pair
    try:
        res_dict = func_timeout(meta_time_out, execute_sql,
                                  args=(predicted_sql, ground_truth, db_place))
    except KeyboardInterrupt:
        sys.exit(0)
    except FunctionTimedOut:
        result = [(f'timeout',)]
        res_dict = {"res": 0, "exec_detail": "timeout"}
    except Exception as e:
        result = [(f'error',)]  # possibly len(query) > 512 or not executable
        res_dict = {"res": 0, "exec_detail": "error"}
    # print(result)
    # result = str(set([ret[0] for ret in result]))
    result = {'sql_idx': idx, 'res': res_dict["res"], "detail": res_dict}
    # print(result)
    return result


def package_sqls(sql_path, db_root_path, mode='gpt', data_mode='dev'):
    clean_sqls = []
    db_path_list = []
    if mode == 'gpt':
        sql_data = json.load(open(sql_path, 'r'))
        for idx, sql_str in sql_data.items():
            if type(sql_str) == str:
                sql, db_name = sql_str.split('\t----- bird -----\t')
            else:
                sql, db_name = " ", "financial"
            clean_sqls.append(sql)
            db_path_list.append(os.path.join(db_root_path, db_name, f"{db_name}.sqlite"))

    elif mode == 'gt':
        sqls = open(sql_path)
        sql_txt = sqls.readlines()
        # sql_txt = [sql.split('\t')[0] for sql in sql_txt]
        for idx, sql_str in enumerate(sql_txt):
            sql, db_name = sql_str.strip().split('\t')
            clean_sqls.append(sql)
            db_path_list.append(os.path.join(db_root_path, db_name, f"{db_name}.sqlite"))

    return clean_sqls, db_path_list

def run_sqls_parallel(sqls, db_places, num_cpus=1, meta_time_out=30.0):
    
    if num_cpus > 1:
        os.environ["TOKENIZERS_PARALLELISM"] = "false"
    results = Parallel(n_jobs=num_cpus)(
        delayed(execute_model)(sqls[i], db_places[i], i, meta_time_out) for i in tqdm(range(len(sqls)), desc="exec"))
    return results

def sort_results(list_of_dicts):
  return sorted(list_of_dicts, key=lambda x: x['sql_idx'])

def compute_acc_by_diff(exec_results, contents):
    num_queries = len(exec_results)
    results = [res['res'] for res in exec_results]

    
    simple_results, moderate_results, challenging_results = [], [], []

    for i,content in enumerate(contents):
        if i >= len(exec_results):
            continue
        if content['difficulty'] == 'simple':
            simple_results.append(exec_results[i])

        if content['difficulty'] == 'moderate':
            moderate_results.append(exec_results[i])

        if content['difficulty'] == 'challenging':
            challenging_results.append(exec_results[i])

    if len(simple_results) != 0:
        simple_acc = sum([res['res'] for res in simple_results])/len(simple_results)
    else:
        simple_acc = 0
    
    if len(moderate_results) != 0:
        moderate_acc = sum([res['res'] for res in moderate_results])/len(moderate_results)
    else:
        moderate_acc = 0
    
    if len(challenging_results) != 0:
        challenging_acc = sum([res['res'] for res in challenging_results])/len(challenging_results)
    else:
        challenging_acc = 0
        
    all_acc = sum(results)/num_queries
    count_lists = [len(simple_results), len(moderate_results), len(challenging_results), num_queries]
    return simple_acc * 100, moderate_acc * 100, challenging_acc * 100, all_acc * 100, count_lists



def print_data(score_lists,count_lists):
    print('======================================    ACCURACY    =====================================')
    levels = ['simple', 'moderate', 'challenging', 'total']
    print("{:20} {:20} {:20} {:20} {:20}".format("", *levels))
    print("{:20} {:<20} {:<20} {:<20} {:<20}".format('count', *count_lists))

    print("{:20} {:<20.2f} {:<20.2f} {:<20.2f} {:<20.2f}".format('accuracy', *score_lists))

def evaluation_main(args, eval_datas, predicted_sql_path):

    exec_result = []

    pred_queries, db_paths = package_sqls(predicted_sql_path, args.db_root_path, mode='gpt',
                                          data_mode=args.mode)
    # generate gt sqls:
    gt_queries, db_paths_gt = package_sqls(args.ground_truth_path, args.db_root_path, mode='gt',
                                           data_mode=args.mode)

    query_pairs = list(zip(pred_queries, gt_queries))
    exec_result = run_sqls_parallel(query_pairs, db_places=db_paths, num_cpus=args.num_cpus, meta_time_out=args.meta_time_out)
    exec_result = sort_results(exec_result)

    # save_result
    res = []
    for sql_pair, exec_res, data in zip(query_pairs, exec_result, eval_datas):
        predicted_sql, ground_truth = sql_pair
        exec_res["ground_truth"] = ground_truth
        exec_res["predicted_sql"] = predicted_sql
        exec_res["question"] = data["question"]
        exec_res["difficulty"] = data["difficulty"]
        res.append(exec_res)
    output_path = predicted_sql_path.replace(".json", "_exec.json")
    json.dump(res, open(output_path, 'w'), indent=4)

    
    print('start calculate')
    simple_acc, moderate_acc, challenging_acc, acc, count_lists = \
        compute_acc_by_diff(exec_result, eval_datas)
    score_lists = [simple_acc, moderate_acc, challenging_acc, acc]
    print_data(score_lists,count_lists)
    print('===========================================================================================')
    print("Finished evaluation")