File size: 16,183 Bytes
2a26d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
#!/usr/bin/env python3
import argparse
import fnmatch
import json
import os
import pdb
import pickle
import re
import sqlite3
from typing import Dict, List, Tuple
import openai
import pandas as pd
import sqlparse
from tqdm import tqdm
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
import os
from openai import AzureOpenAI
def new_directory(path):
if not os.path.exists(path):
os.makedirs(path)
def load_json(data_path):
with open(data_path, "r") as f:
datas = json.load(f)
return datas
def get_db_schemas(bench_root: str, db_name: str) -> Dict[str, str]:
"""
Read an sqlite file, and return the CREATE commands for each of the tables in the database.
"""
asdf = 'database' if bench_root == 'spider' else 'databases'
with sqlite3.connect(f'file:{bench_root}/{asdf}/{db_name}/{db_name}.sqlite?mode=ro', uri=True) as conn:
# conn.text_factory = bytes
cursor = conn.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
tables = cursor.fetchall()
schemas = {}
for table in tables:
cursor.execute("SELECT sql FROM sqlite_master WHERE type='table' AND name='{}';".format(table[0]))
schemas[table[0]] = cursor.fetchone()[0]
return schemas
def nice_look_table(column_names: list, values: list):
rows = []
# Determine the maximum width of each column
widths = [max(len(str(value[i])) for value in values + [column_names]) for i in range(len(column_names))]
# Print the column names
header = ''.join(f'{column.rjust(width)} ' for column, width in zip(column_names, widths))
# print(header)
# Print the values
for value in values:
row = ''.join(f'{str(v).rjust(width)} ' for v, width in zip(value, widths))
rows.append(row)
rows = "\n".join(rows)
final_output = header + '\n' + rows
return final_output
def generate_schema_prompt(db_path, num_rows=None):
# extract create ddls
'''
:param root_place:
:param db_name:
:return:
'''
full_schema_prompt_list = []
conn = sqlite3.connect(db_path)
# Create a cursor object
cursor = conn.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table'")
tables = cursor.fetchall()
schemas = {}
for table in tables:
if table == 'sqlite_sequence':
continue
cursor.execute("SELECT sql FROM sqlite_master WHERE type='table' AND name='{}';".format(table[0]))
create_prompt = cursor.fetchone()[0]
schemas[table[0]] = create_prompt
if num_rows:
cur_table = table[0]
if cur_table in ['order', 'by', 'group']:
cur_table = "`{}`".format(cur_table)
cursor.execute("SELECT * FROM {} LIMIT {}".format(cur_table, num_rows))
column_names = [description[0] for description in cursor.description]
values = cursor.fetchall()
rows_prompt = nice_look_table(column_names=column_names, values=values)
verbose_prompt = "/* \n {} example rows: \n SELECT * FROM {} LIMIT {}; \n {} \n */".format(num_rows, cur_table, num_rows, rows_prompt)
schemas[table[0]] = "{} \n {}".format(create_prompt, verbose_prompt)
for k, v in schemas.items():
full_schema_prompt_list.append(v)
schema_prompt = "\n\n".join(full_schema_prompt_list)
return schema_prompt
def generate_comment_prompt(question, knowledge=None):
pattern_prompt_no_kg = "-- Using valid SQLite, answer the following questions for the tables provided above."
pattern_prompt_kg = "-- Using valid SQLite and understading External Knowledge, answer the following questions for the tables provided above."
# question_prompt = "-- {}".format(question) + '\n SELECT '
question_prompt = "-- {}".format(question)
knowledge_prompt = "-- External Knowledge: {}".format(knowledge)
if not knowledge:
result_prompt = pattern_prompt_no_kg + '\n' + question_prompt
else:
result_prompt = knowledge_prompt + '\n' + pattern_prompt_kg + '\n' + question_prompt
return result_prompt
def cot_wizard():
cot = "\nGenerate the SQL after thinking step by step: "
# cot = "\nCarefully reason through each step to generate the SQL query:"
return cot
def few_shot():
ini_table = "CREATE TABLE singer\n(\n singer_id TEXT not null\n primary key,\n nation TEXT not null,\n sname TEXT null,\n dname TEXT null,\n cname TEXT null,\n age INTEGER not null,\n year INTEGER not null,\n birth_year INTEGER null,\n salary REAL null,\n city TEXT null,\n phone_number INTEGER null,\n-- tax REAL null,\n)"
ini_prompt = "-- External Knowledge: age = year - birth_year;\n-- Using valid SQLite and understading External Knowledge, answer the following questions for the tables provided above.\n-- How many singers in USA who is older than 27?\nThe final SQL is: Let's think step by step."
ini_cot_result = "1. referring to external knowledge, we need to filter singers 'by year' - 'birth_year' > 27; 2. we should find out the singers of step 1 in which nation = 'US', 3. use COUNT() to count how many singers. Finally the SQL is: SELECT COUNT(*) FROM singer WHERE year - birth_year > 27;</s>"
one_shot_demo = ini_table + '\n' + ini_prompt + '\n' + ini_cot_result
return one_shot_demo
def few_shot_no_kg():
ini_table = "CREATE TABLE singer\n(\n singer_id TEXT not null\n primary key,\n nation TEXT not null,\n sname TEXT null,\n dname TEXT null,\n cname TEXT null,\n age INTEGER not null,\n year INTEGER not null,\n age INTEGER null,\n salary REAL null,\n city TEXT null,\n phone_number INTEGER null,\n-- tax REAL null,\n)"
ini_prompt = "-- External Knowledge:\n-- Using valid SQLite and understading External Knowledge, answer the following questions for the tables provided above.\n-- How many singers in USA who is older than 27?\nThe final SQL is: Let's think step by step."
ini_cot_result = "1. 'older than 27' refers to age > 27 in SQL; 2. we should find out the singers of step 1 in which nation = 'US', 3. use COUNT() to count how many singers. Finally the SQL is: SELECT COUNT(*) FROM singer WHERE age > 27;</s>"
one_shot_demo = ini_table + '\n' + ini_prompt + '\n' + ini_cot_result
return one_shot_demo
def generate_combined_prompts_one(db_path, question, knowledge=None):
schema_prompt = generate_schema_prompt(db_path, num_rows=None) # This is the entry to collect values
comment_prompt = generate_comment_prompt(question, knowledge)
combined_prompts = schema_prompt + '\n\n' + comment_prompt + cot_wizard() + '\nSELECT '
# combined_prompts = few_shot_no_kg() + '\n\n' + schema_prompt + '\n\n' + comment_prompt
# print("="*100)
# print(combined_prompts)
# print("="*100)
return combined_prompts
def quota_giveup(e):
return isinstance(e, openai.error.RateLimitError) and "quota" in str(e)
def connect_gpt(engine, prompt, max_tokens, temperature, stop):
try:
result = openai.Completion.create(engine=engine, prompt=prompt, max_tokens=max_tokens, temperature=temperature, stop=stop)
except Exception as e:
result = 'error:{}'.format(e)
return result
def llm_generate_result(model_name_or_path, gpus_num, prompt_ls, args=None):
print("model", model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
print(
"load tokenizer {} from {} over.".format(
tokenizer.__class__, model_name_or_path
)
)
llm_args = {
"model": model_name_or_path,
"gpu_memory_utilization": 0.95,
"trust_remote_code": True,
"tensor_parallel_size": gpus_num,
"dtype": "half",
"max_model_len": 8192,
"enforce_eager": True,
}
llm = LLM(**llm_args)
sampling_params = SamplingParams(
temperature=0,
max_tokens=1024,
top_p=0.95,
stop_token_ids=[tokenizer.eos_token_id],
)
messages_list = []
num = 0
for prompt in tqdm(prompt_ls, desc="trans prompt"):
message = [{"role": "user", "content": prompt}]
messages_list.append(
tokenizer.apply_chat_template(
message, tokenize=False, add_generation_prompt=True
)
)
tk = tokenizer.apply_chat_template(
message, tokenize=True, add_generation_prompt=True
)
if len(tk) > 7168:
print("="*100)
# print(tk)
num += 1
# print("="*100, "cut nums: ", num)
outputs = llm.generate(messages_list, sampling_params=sampling_params)
generated_res = []
ori_generated_res = []
for i, output in enumerate(tqdm(outputs)):
text = output.outputs[0].text
ori_generated_res.append(text)
sql = parser_sql(text)
generated_res.append(sql)
return generated_res, ori_generated_res
def gpt_generate_result(model_name_or_path, gpus_num, prompt_ls, args=None):
client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-07-01-preview",
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
max_retries=3
)
generated_res = []
ori_generated_res = []
output_name = os.path.join(args.data_output_path, f'{args.eval_data_name}_{args.mode}_{args.is_use_knowledge}_temp.json')
unparser_name = os.path.join(args.data_output_path,f'{args.eval_data_name}_{args.mode}_{args.is_use_knowledge}_unparser_temp.json')
if os.path.exists(unparser_name):
ori_generated_res_dict = load_json(unparser_name)
generated_res_dict = load_json(output_name)
generated_res = [v for k,v in generated_res_dict.items()]
ori_generated_res = [v for k,v in ori_generated_res_dict.items()]
for i in tqdm(range(len(prompt_ls))):
if i < len(generated_res):
continue
prompt = prompt_ls[i]
response = client.chat.completions.create(
model="gpt-4o",
# model="gpt-4o-mini",
messages=[
# {"role": "system", "content": "Assistant is a large language model trained by OpenAI."},
{"role": "user", "content": prompt}
],
# stop=["\nObservation:"],
temperature=0.01,
timeout=40
)
generated_message = response.choices[0].message
text = generated_message.content
ori_generated_res.append(text)
sql = parser_sql(text)
generated_res.append(sql)
if i % 50 == 0:
generate_sql_file(sql_lst=generated_res, output_path=output_name)
generate_sql_file(sql_lst=ori_generated_res, output_path=unparser_name) # 未解析的结果保存
return generated_res, ori_generated_res
def parser_sql(text):
text = text.strip()
sql_query_1 = re.search(r'```sql(.*?)```', text, re.DOTALL)
sql_query_2 = re.search(r'```(.*?)```', text, re.DOTALL)
if sql_query_1:
extracted_sql = sql_query_1.group(1).strip()
elif sql_query_2:
extracted_sql = sql_query_2.group(1).strip()
else:
top_word = text.split(" ")[0]
if not top_word.lower().startswith("select"):
extracted_sql = "SELECT " + text
else:
extracted_sql = text
extracted_sql_ls = extracted_sql.split("\n")
extracted_sql_ls = [s for s in extracted_sql_ls if not s.lower().startswith("-- ") ]
extracted_sql = "\n".join(extracted_sql_ls)
return extracted_sql
def collect_response_from_gpt(model_path, gpus_num, db_path_list, question_list, knowledge_list=None, args=None):
'''
:param db_path: str
:param question_list: []
:return: dict of responses collected from llm
'''
responses_dict = {}
response_list = []
prompt_ls = []
for i in tqdm(range(len(question_list)), desc="get prompt"):
# print('--------------------- processing {}th question ---------------------'.format(i))
# print('the question is: {}'.format(question))
question = question_list[i]
if knowledge_list:
cur_prompt = generate_combined_prompts_one(db_path=db_path_list[i], question=question, knowledge=knowledge_list[i])
else:
cur_prompt = generate_combined_prompts_one(db_path=db_path_list[i], question=question)
prompt_ls.append(cur_prompt)
if args.use_gpt_api:
outputs_sql, ori_outputs_text = gpt_generate_result(model_path, gpus_num, prompt_ls, args)
else:
outputs_sql, ori_outputs_text = llm_generate_result(model_path, gpus_num, prompt_ls, args)
for i in tqdm(range(len(question_list)), desc="postprocess result"):
question = question_list[i]
sql = outputs_sql[i]
db_id = db_path_list[i].split('/')[-1].split('.sqlite')[0]
sql = sql + '\t----- bird -----\t' + db_id # to avoid unpredicted \t appearing in codex results
response_list.append(sql)
return response_list, ori_outputs_text
def question_package(data_json, knowledge=False):
question_list = []
for data in data_json:
question_list.append(data['question'])
return question_list
def knowledge_package(data_json, knowledge=False):
knowledge_list = []
for data in data_json:
knowledge_list.append(data['evidence'])
return knowledge_list
def decouple_question_schema(datasets, db_root_path):
question_list = []
db_path_list = []
knowledge_list = []
for i, data in enumerate(datasets):
question_list.append(data['question'])
cur_db_path = os.path.join(db_root_path, data['db_id'], f"{data['db_id']}.sqlite")
db_path_list.append(cur_db_path)
knowledge_list.append(data['evidence'])
return question_list, db_path_list, knowledge_list
def generate_sql_file(sql_lst, output_path=None):
result = {}
for i, sql in enumerate(sql_lst):
result[i] = sql
if output_path:
directory_path = os.path.dirname(output_path)
new_directory(directory_path)
json.dump(result, open(output_path, 'w'), indent=4)
return result
def generate_main(eval_data, args):
question_list, db_path_list, knowledge_list = decouple_question_schema(datasets=eval_data, db_root_path=args.db_root_path)
assert len(question_list) == len(db_path_list) == len(knowledge_list)
if args.use_knowledge == 'True':
responses, ori_outputs_text = collect_response_from_gpt(model_path=args.model_path, gpus_num=args.gpus_num, db_path_list=db_path_list, question_list=question_list, knowledge_list=knowledge_list, args=args)
else:
responses, ori_outputs_text = collect_response_from_gpt(model_path=args.model_path, gpus_num=args.gpus_num, db_path_list=db_path_list, question_list=question_list, knowledge_list=None, args=args)
if args.chain_of_thought == 'True':
output_name = os.path.join(args.data_output_path, f'{args.eval_data_name}_{args.mode}_cot.json')
else:
output_name = os.path.join(args.data_output_path, f'{args.eval_data_name}_{args.mode}_{args.is_use_knowledge}.json')
unparser_name = os.path.join(args.data_output_path,f'{args.eval_data_name}_{args.mode}_{args.is_use_knowledge}_unparser.json')
# pdb.set_trace()
generate_sql_file(sql_lst=responses, output_path=output_name)
generate_sql_file(sql_lst=ori_outputs_text, output_path=unparser_name) # 未解析的结果保存
print('successfully collect results from {} for {} evaluation; Use knowledge: {}; Use COT: {}'.format(args.model_path, args.mode, args.use_knowledge, args.chain_of_thought))
print(f'output: {output_name}')
# 返回推理数据保存路径
return output_name
|