File size: 8,984 Bytes
2a26d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# -*- coding: utf-8 -*-
import ast
import json
import random
import re
import signal
import threading
from contextlib import contextmanager
from typing import Any, Tuple

import pandas as pd
from langchain_experimental.tools.python.tool import PythonAstREPLTool

from evaluate_code_correction.pytool import (
    extract_last_df, format_result)


def read_jsonl(file_path):

    data = []
    with open(file_path, "r", encoding="utf-8") as f:
        for line in f:
            data.append(json.loads(line.strip()))
    return data

def load_json(data_path):
    """
    # 加载 json 文件
    """
    with open(data_path, "r", encoding="utf-8") as f:
        data = json.load(f)
    return data


def save_json(data_path, data_list):
    """
    # 保存 json 文件
    """
    with open(data_path, "w", encoding="utf-8") as f:
        json.dump(data_list, f, ensure_ascii=False)


def get_dfs_info(table_paths):
    """将所有csv文件对应的df-info拼装到一起"""
    infos_list = []
    if len(table_paths) == 1:
        df_markdown_info = str(
            pd.read_csv(table_paths[0], encoding="utf-8").head(5).to_string(index=False)
        )
        normalized_head = f"""/*\n"df.head()" as follows:\n{df_markdown_info}\n*/"""
        infos_list.append(normalized_head)
    else:
        for i, path in enumerate(table_paths):
            # normalized_name = normalize_table_name(path)
            df_markdown_info = str(
                pd.read_csv(path, encoding="utf-8").head(5).to_string(index=False)
            )
            normalized_head = (
                f"""/*\n"df{i+1}.head()" as follows:\n{df_markdown_info}\n*/"""
            )
            # single_table_name = "\n".join([normalized_head, df_markdown_info])
            infos_list.append(normalized_head)
    return "\n".join(infos_list)


def sample_from_two_lists(list1, list2):
    # 如果列表为空,则直接返回None或抛出异常,取决于你的需求
    if not list1 or not list2:
        return None  # 或者你可以抛出异常

    # 生成一个0到1之间的随机浮点数
    rand_val = random.random()

    # 如果随机数小于0.5,从第一个列表中采样
    if rand_val < 0.5:
        return random.choice(list1)
    # 否则,从第二个列表中采样
    else:
        return random.choice(list2)


def recraft_query(query, locals):
    last_df = extract_last_df(query, locals)
    end_str = "\n" + format_result + "print(format_result({}))".format(last_df)
    recraft_query = query + end_str
    return recraft_query


def extract_code_without_comments(code):
    """
    从Python代码中提取除注释行以外的代码。

    :param code: str, 输入的Python代码
    :return: str, 提取后的代码
    """
    code = re.sub(r'"""[\s\S]*?"""', "", code)
    code = re.sub(r"'''[\s\S]*?'''", "", code)

    # 移除单行注释
    lines = code.split("\n")
    cleaned_lines = []
    for line in lines:
        # 移除以 # 开始的注释,但保留字符串中的 #
        cleaned_line = re.sub(r'(?<!["\'"])#.*$', "", line)
        cleaned_lines.append(cleaned_line.rstrip())  # rstrip() 移除行尾空白
    # 重新组合代码,保留空行以维持原始结构
    return "\n".join(cleaned_lines)


def is_python_code(line: str) -> bool:
    """Tool function to check if a line of text is Python code"""
    try:
        tree = ast.parse(line)
        # Check if the parsed tree has at least one node that represents executable code
        for node in ast.walk(tree):
            if isinstance(
                node,
                (
                    ast.Expr,
                    ast.Assign,
                    ast.FunctionDef,
                    ast.ClassDef,
                    ast.Import,
                    ast.ImportFrom,
                    ast.For,
                    ast.While,
                    ast.If,
                    ast.With,
                    ast.Raise,
                    ast.Try,
                ),
            ):
                return True
        return False
    except SyntaxError:
        return False


def extract_text_before_code(text: str) -> str:
    """Tool function for extract text content"""
    lines = text.split("\n")
    text_before_code = []

    for line in lines:
        if is_python_code(line):
            break
        text_before_code.append(line)

    return "\n".join(text_before_code)


def extract_python_code(text: str) -> str:
    """Tool function for extract python code"""
    lines = text.split("\n")
    python_code = []

    for line in lines:
        if is_python_code(line):
            python_code.append(line)

    return "\n".join(python_code)


def fix_indents(text: str) -> str:
    return text.replace("\t", "    ")


def filter_cot(completion: str):
    """
    Filter the COT steps before python code
    :param completion: llm output contents
    :return filtered COT content
    """
    try:
        # 如果输出较为规范,可以使用这种方式提取cot部分的内容
        pattern = r"Thought:\s*(.*?)\s*(?=Python Code:)"
        match = re.search(pattern, completion, re.DOTALL)
        if match:
            thought_content = match.group(1)
        else:
            # 如果输出内容相对杂乱
            thought_content = extract_text_before_code(completion)
        return thought_content
    except:
        return ""


def filter_code(completion: str) -> Tuple[str, str]:
    """
    Filter python code from the llm output completion
    :param completion: llm output contents
    :return filtered python code and execute code
    """

    try:
        # 输出形式符合prompt
        regex = r"```python\s(.*?)```"
        action_match = re.search(regex, completion, re.DOTALL)
        if action_match:
            action_input = action_match.group(1)
            action_input = action_input.strip(" ")
            action_input = action_input.strip('"')
            code = action_input.strip(" ")
        else:
            # 输出形式随意
            code = extract_python_code(completion)
            code = code.strip(" ")
        pure_code = extract_code_without_comments(code)
        return code, pure_code
    except:
        return "", ""


def get_tool(df: Any, df_names=None):
    """
    Define python code execute tool
    :param df: List[pd.DataFrame] or pd.DataFrame
    :return Runnable
    """
    tool = PythonAstREPLTool()
    if df_names == None:
        if isinstance(df, pd.DataFrame):
            locals = {"df": df}
        else:
            locals = {}
            for i, dataframe in enumerate(df):
                locals[f"df{i + 1}"] = dataframe
    else:
        locals = {}
        for i, dataframe in enumerate(df):
            locals[df_names[i]] = dataframe
    tool.locals = locals
    tool.globals = tool.locals
    return tool


def get_table_infos(table_paths):
    """将所有csv文件对应的df-info拼装到一起"""
    infos_list = []
    if len(table_paths) == 1:
        df_markdown_info = str(
            pd.read_csv(table_paths[0], encoding="utf-8")
            .head(3)
            .to_markdown(index=False)
        )
        normalized_head = f"""/*\n"df.head()" as follows:\n{df_markdown_info}\n*/"""
        infos_list.append(normalized_head)
    else:
        for i, path in enumerate(table_paths):
            # normalized_name = normalize_table_name(path)
            df_markdown_info = str(
                pd.read_csv(path, encoding="utf-8").head(3).to_markdown(index=False)
            )
            normalized_head = (
                f"""/*\n"df{i+1}.head()" as follows:\n{df_markdown_info}\n*/"""
            )
            # single_table_name = "\n".join([normalized_head, df_markdown_info])
            infos_list.append(normalized_head)
    return "\n".join(infos_list)


# 定义一个异常类,用于超时处理
class TimeoutException(Exception):
    pass


# 创建一个上下文管理器来处理超时
@contextmanager
def timeout(time):
    # 定义信号处理函数
    def raise_timeout(signum, frame):
        raise TimeoutException(f"Timeout error, running time exceed {time}")

    # 设置信号定时器
    signal.signal(signal.SIGALRM, raise_timeout)
    signal.alarm(time)
    try:
        yield
    finally:
        # 取消信号定时器
        signal.alarm(0)


def run_code(code, result, tool):
    try:
        # 在子线程中运行代码
        result.append(tool.run(code))
    except Exception as e:
        result.append(e)


def execute_with_timeout(code, timeout_seconds, tool):
    result = []
    thread = threading.Thread(target=run_code, args=(code, result, tool))
    thread.start()
    thread.join(timeout_seconds)

    if thread.is_alive():
        thread._stop()  # 终止子线程
        raise TimeoutException(
            f"Timeout error, running time exceed {timeout_seconds} seconds"
        )
    else:
        if isinstance(result[0], Exception):
            raise result[0]
        return result[0]