Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- stanfordnlp/imdb
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
---
|
| 7 |
+
# Model Card for SwarmFormer-Small
|
| 8 |
+
|
| 9 |
+
SwarmFormer-Small is a lightweight variant of the SwarmFormer architecture, designed for efficient text classification with minimal computational requirements.
|
| 10 |
+
|
| 11 |
+
## Model Details
|
| 12 |
+
|
| 13 |
+
### Model Description
|
| 14 |
+
Compact version of SwarmFormer with:
|
| 15 |
+
- Token embedding layer with dropout (0.3)
|
| 16 |
+
- Two SwarmFormer layers
|
| 17 |
+
- Mean pooling and classification
|
| 18 |
+
- Optimized for shorter sequences
|
| 19 |
+
|
| 20 |
+
- **Developed by**: Jordan Legg, Mikus Sturmanis, Takara.ai
|
| 21 |
+
- **Funded by**: Takara.ai
|
| 22 |
+
- **Shared by**: Takara.ai
|
| 23 |
+
- **Model type**: Hierarchical transformer
|
| 24 |
+
- **Language(s)**: English
|
| 25 |
+
- **License**: Not specified
|
| 26 |
+
- **Finetuned from model**: Trained from scratch
|
| 27 |
+
|
| 28 |
+
### Model Sources
|
| 29 |
+
- **Repository**: https://github.com/takara-ai/SwarmFormer
|
| 30 |
+
- **Paper**: Takara.ai Research
|
| 31 |
+
- **Demo**: Not available
|
| 32 |
+
|
| 33 |
+
## Uses
|
| 34 |
+
|
| 35 |
+
### Direct Use
|
| 36 |
+
- Text classification
|
| 37 |
+
- Sentiment analysis
|
| 38 |
+
- Resource-constrained environments
|
| 39 |
+
|
| 40 |
+
### Out-of-Scope Use
|
| 41 |
+
- Text generation
|
| 42 |
+
- Machine translation
|
| 43 |
+
- Tasks requiring >256 tokens
|
| 44 |
+
- Tasks requiring high precision
|
| 45 |
+
|
| 46 |
+
## Training Details
|
| 47 |
+
|
| 48 |
+
### Training Data
|
| 49 |
+
- Dataset: IMDB Movie Review
|
| 50 |
+
- Size: 50,000 samples
|
| 51 |
+
- Augmentation techniques applied
|
| 52 |
+
|
| 53 |
+
### Training Procedure
|
| 54 |
+
|
| 55 |
+
#### Model Architecture Details
|
| 56 |
+
1. **Token Embedding Layer**:
|
| 57 |
+
```python
|
| 58 |
+
- Embedding layer (vocab_size → 128)
|
| 59 |
+
- Dropout rate: 0.3
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
2. **Local Swarm Aggregator**:
|
| 63 |
+
```python
|
| 64 |
+
- Input dropout: 0.3
|
| 65 |
+
- Local MLP:
|
| 66 |
+
- Linear(128 → 128)
|
| 67 |
+
- GELU
|
| 68 |
+
- Dropout(0.3)
|
| 69 |
+
- Linear(128 → 128)
|
| 70 |
+
- Gate network with GELU
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
3. **Clustering Mechanism**:
|
| 74 |
+
- Cluster size: 8 tokens
|
| 75 |
+
- Mean pooling per cluster
|
| 76 |
+
|
| 77 |
+
4. **Global Cluster Attention**:
|
| 78 |
+
```python
|
| 79 |
+
- Q/K/V projections: Linear(128 → 128)
|
| 80 |
+
- Attention dropout: 0.3
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
#### Training Hyperparameters
|
| 84 |
+
- Embedding dimension: 128
|
| 85 |
+
- Number of layers: 2
|
| 86 |
+
- Local update steps: 3
|
| 87 |
+
- Cluster size: 8
|
| 88 |
+
- Sequence length: 256
|
| 89 |
+
- Batch size: 96
|
| 90 |
+
- Learning rate: 4.76 × 10⁻⁴
|
| 91 |
+
- Weight decay: 0.0541
|
| 92 |
+
- Dropout: 0.30
|
| 93 |
+
|
| 94 |
+
## Evaluation
|
| 95 |
+
|
| 96 |
+
### Results
|
| 97 |
+
- Accuracy: 86.20%
|
| 98 |
+
- Precision: 83.46%
|
| 99 |
+
- Recall: 90.31%
|
| 100 |
+
- F1: 86.75%
|
| 101 |
+
- Inference time: 0.36s (25k samples)
|
| 102 |
+
- Mean batch latency: 3.67ms
|
| 103 |
+
- Throughput: 45k samples/s
|
| 104 |
+
- Peak memory: 8GB
|
| 105 |
+
|
| 106 |
+
## Technical Specifications
|
| 107 |
+
|
| 108 |
+
### Compute Infrastructure
|
| 109 |
+
- GPU: NVIDIA RTX 2080 Ti
|
| 110 |
+
- VRAM: 8GB minimum
|
| 111 |
+
- Training time: 3.6 minutes
|
| 112 |
+
|
| 113 |
+
### How to Get Started
|
| 114 |
+
```python
|
| 115 |
+
from swarmformer import SwarmFormerModel
|
| 116 |
+
|
| 117 |
+
model = SwarmFormerModel(
|
| 118 |
+
vocab_size=30000,
|
| 119 |
+
d_model=128,
|
| 120 |
+
seq_len=256,
|
| 121 |
+
cluster_size=8,
|
| 122 |
+
num_layers=2,
|
| 123 |
+
T_local=3
|
| 124 |
+
)
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
## Citation
|
| 128 |
+
|
| 129 |
+
```bibtex
|
| 130 |
+
@article{legg2025swarmformer,
|
| 131 |
+
title={SwarmFormer: Local-Global Hierarchical Attention via Swarming Token Representations},
|
| 132 |
+
author={Legg, Jordan and Sturmanis, Mikus and {Takara.ai}},
|
| 133 |
+
journal={Takara.ai Research},
|
| 134 |
+
year={2025},
|
| 135 |
+
url={https://takara.ai/papers/SwarmFormer-Local-Global-Hierarchical-Attention-via-Swarming-Token-Representations.pdf}
|
| 136 |
+
}
|
| 137 |
+
```
|
| 138 |
+
|
| 139 |
+
## Model Card Authors
|
| 140 |
+
Jordan Legg, Mikus Sturmanis, Takara.ai Research Team
|
| 141 |
+
|
| 142 |
+
## Model Card Contact
|
| 143 |