readme
Browse files
README.md
CHANGED
@@ -66,30 +66,31 @@ CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable
|
|
66 |
|
67 |
```
|
68 |
Seed set to 23
|
69 |
-
Time to instantiate model: 0.
|
70 |
-
Total parameters:
|
71 |
Verifying settings ...
|
72 |
-
Measured TFLOPs:
|
73 |
-
|
74 |
-
Epoch 1 | iter
|
75 |
-
Epoch 1 | iter
|
76 |
-
Epoch 1 | iter
|
77 |
-
Epoch 1 | iter
|
78 |
-
Epoch 1 | iter
|
79 |
-
Epoch 1 | iter
|
80 |
-
Epoch 1 | iter
|
81 |
-
Epoch 1 | iter
|
82 |
-
Epoch 1 | iter
|
83 |
-
Epoch 1 | iter
|
84 |
-
Epoch 1 | iter
|
85 |
-
Epoch 1 | iter
|
86 |
-
Epoch 1 | iter
|
87 |
-
Epoch 1 | iter
|
88 |
-
Epoch 1 | iter
|
89 |
-
Epoch 1 | iter
|
90 |
-
Epoch 1 | iter
|
91 |
-
Epoch 1 | iter
|
92 |
-
Epoch 1 | iter
|
|
|
93 |
# ...
|
94 |
```
|
95 |
|
|
|
66 |
|
67 |
```
|
68 |
Seed set to 23
|
69 |
+
Time to instantiate model: 0.24 seconds.
|
70 |
+
Total parameters: 182,125,056
|
71 |
Verifying settings ...
|
72 |
+
Measured TFLOPs: 7041.81
|
73 |
+
|
74 |
+
Epoch 1 | iter 256 step 1 | loss train: 10.529, val: n/a | iter time: 1696.67 ms (step) remaining time: 4 days, 7:44:36
|
75 |
+
Epoch 1 | iter 512 step 2 | loss train: 10.200, val: n/a | iter time: 1260.46 ms (step) remaining time: 4 days, 2:29:51
|
76 |
+
Epoch 1 | iter 768 step 3 | loss train: 9.875, val: n/a | iter time: 1246.06 ms (step) remaining time: 4 days, 0:59:11
|
77 |
+
Epoch 1 | iter 1024 step 4 | loss train: 9.634, val: n/a | iter time: 1245.91 ms (step) remaining time: 4 days, 0:38:01
|
78 |
+
Epoch 1 | iter 1280 step 5 | loss train: 9.504, val: n/a | iter time: 1248.04 ms (step) remaining time: 4 days, 0:28:49
|
79 |
+
Epoch 1 | iter 1536 step 6 | loss train: 9.371, val: n/a | iter time: 1220.81 ms (step) remaining time: 4 days, 0:32:52
|
80 |
+
Epoch 1 | iter 1792 step 7 | loss train: 9.269, val: n/a | iter time: 1238.00 ms (step) remaining time: 4 days, 0:30:03
|
81 |
+
Epoch 1 | iter 2048 step 8 | loss train: 9.214, val: n/a | iter time: 1244.22 ms (step) remaining time: 4 days, 0:30:30
|
82 |
+
Epoch 1 | iter 2304 step 9 | loss train: 9.109, val: n/a | iter time: 1220.57 ms (step) remaining time: 4 days, 0:25:37
|
83 |
+
Epoch 1 | iter 2560 step 10 | loss train: 9.061, val: n/a | iter time: 1251.13 ms (step) remaining time: 4 days, 0:12:57
|
84 |
+
Epoch 1 | iter 2816 step 11 | loss train: 9.031, val: n/a | iter time: 1241.17 ms (step) remaining time: 4 days, 0:05:06
|
85 |
+
Epoch 1 | iter 3072 step 12 | loss train: 8.944, val: n/a | iter time: 1280.45 ms (step) remaining time: 4 days, 0:00:31
|
86 |
+
Epoch 1 | iter 3328 step 13 | loss train: 8.931, val: n/a | iter time: 1241.07 ms (step) remaining time: 4 days, 0:00:08
|
87 |
+
Epoch 1 | iter 3584 step 14 | loss train: 8.910, val: n/a | iter time: 1229.04 ms (step) remaining time: 3 days, 23:59:03
|
88 |
+
Epoch 1 | iter 3840 step 15 | loss train: 8.823, val: n/a | iter time: 1239.92 ms (step) remaining time: 3 days, 23:55:02
|
89 |
+
Epoch 1 | iter 4096 step 16 | loss train: 8.745, val: n/a | iter time: 1239.53 ms (step) remaining time: 3 days, 23:50:02
|
90 |
+
Epoch 1 | iter 4352 step 17 | loss train: 8.679, val: n/a | iter time: 1271.10 ms (step) remaining time: 3 days, 23:46:19
|
91 |
+
Epoch 1 | iter 4608 step 18 | loss train: 8.654, val: n/a | iter time: 1246.47 ms (step) remaining time: 3 days, 23:43:27
|
92 |
+
Epoch 1 | iter 4864 step 19 | loss train: 8.651, val: n/a | iter time: 1246.56 ms (step) remaining time: 3 days, 23:41:11
|
93 |
+
Epoch 1 | iter 5120 step 20 | loss train: 8.639, val: n/a | iter time: 1219.66 ms (step) remaining time: 3 days, 23:35:38
|
94 |
# ...
|
95 |
```
|
96 |
|