File size: 7,135 Bytes
038f0de
 
c5c7625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
038f0de
c5c7625
 
 
 
 
 
 
 
 
 
e15928d
 
c5c7625
 
 
 
 
 
 
18659f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5c7625
18659f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5c7625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---

license: mit
pipeline_tag: text-generation
library_name: transformers
language: [
    'en', 'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el',
    'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he',
    'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko',
    'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my',
    'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si',
    'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tn',
    'tr', 'ug', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zu',
]
datasets:
# core - base
- ontocord/fineweb-permissive-multilingual-2m
- distily/c4_multilingual_1M
- data-silence/sumnews
- xu-song/cc100-samples
- badrex/llm-emoji-dataset
- fblgit/simple-math
- Gusarich/math-expressions-1m
- neuralwork/arxiver
- christopher/rosetta-code
- nampdn-ai/tiny-codes
- JeanKaddour/minipile
# core - instruct
- NousResearch/hermes-function-calling-v1
- simplescaling/s1K-1.1
# base - instruct
- mlabonne/open-perfectblend
- allenai/tulu-3-sft-mixture
- rombodawg/Everything_Instruct_Multilingual
# base - reason
- open-r1/OpenR1-Math-220k
- open-thoughts/OpenThoughts-114k
- cognitivecomputations/dolphin-r1
- simplescaling/s1K-1.1
tags:
- chat
- core
- base
- instruct
- reason
---


# tangled-alpha-0.4-core

![logo](./misc/logo.jpg)

```bash

time python -B prepare_core_datasets.py

```

```

i=0, min_len=0, max_len=1048576, block_size=4097, chunk_size=16388000, len(dataset)=1567386, len(dataset) * block_size=6421580442

Total number of tokens in the optimized dataset '../core-data-0-0-1048576-4097-4000' is 6421580442

```

```bash

CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt pretrain --config pretrain-core-model.yaml

```

```

Seed set to 23

Time to instantiate model: 0.23 seconds.

Total parameters: 185,631,232

Verifying settings ...

Measured TFLOPs: 7047.32

Epoch 1 | iter 256 step 1 | loss train: 11.714, val: n/a | iter time: 370.39 ms (step) remaining time: 4 days, 1:24:16

Epoch 1 | iter 512 step 2 | loss train: 11.711, val: n/a | iter time: 311.97 ms (step) remaining time: 3 days, 8:48:48

Epoch 1 | iter 768 step 3 | loss train: 11.708, val: n/a | iter time: 313.48 ms (step) remaining time: 3 days, 3:22:46

Epoch 1 | iter 1024 step 4 | loss train: 11.704, val: n/a | iter time: 313.71 ms (step) remaining time: 3 days, 0:41:32

Epoch 1 | iter 1280 step 5 | loss train: 11.694, val: n/a | iter time: 314.42 ms (step) remaining time: 2 days, 23:05:08

Epoch 1 | iter 1536 step 6 | loss train: 11.687, val: n/a | iter time: 314.62 ms (step) remaining time: 2 days, 22:00:35

Epoch 1 | iter 1792 step 7 | loss train: 11.668, val: n/a | iter time: 314.94 ms (step) remaining time: 2 days, 21:14:06

Epoch 1 | iter 2048 step 8 | loss train: 11.645, val: n/a | iter time: 316.28 ms (step) remaining time: 2 days, 20:39:12

Epoch 1 | iter 2304 step 9 | loss train: 11.630, val: n/a | iter time: 315.29 ms (step) remaining time: 2 days, 20:11:52

Epoch 1 | iter 2560 step 10 | loss train: 11.609, val: n/a | iter time: 315.53 ms (step) remaining time: 2 days, 19:49:36

Epoch 1 | iter 2816 step 11 | loss train: 11.564, val: n/a | iter time: 314.95 ms (step) remaining time: 2 days, 19:31:09

Epoch 1 | iter 3072 step 12 | loss train: 11.510, val: n/a | iter time: 314.23 ms (step) remaining time: 2 days, 19:15:24

Epoch 1 | iter 3328 step 13 | loss train: 11.453, val: n/a | iter time: 315.71 ms (step) remaining time: 2 days, 19:02:02

Epoch 1 | iter 3584 step 14 | loss train: 11.411, val: n/a | iter time: 316.43 ms (step) remaining time: 2 days, 18:50:24

Epoch 1 | iter 3840 step 15 | loss train: 11.346, val: n/a | iter time: 314.83 ms (step) remaining time: 2 days, 18:40:08

Epoch 1 | iter 4096 step 16 | loss train: 11.300, val: n/a | iter time: 314.94 ms (step) remaining time: 2 days, 18:30:57

Epoch 1 | iter 4352 step 17 | loss train: 11.237, val: n/a | iter time: 314.13 ms (step) remaining time: 2 days, 18:22:39

Epoch 1 | iter 4608 step 18 | loss train: 11.193, val: n/a | iter time: 314.85 ms (step) remaining time: 2 days, 18:15:08

Epoch 1 | iter 4864 step 19 | loss train: 11.131, val: n/a | iter time: 315.23 ms (step) remaining time: 2 days, 18:08:16

Epoch 1 | iter 5120 step 20 | loss train: 11.084, val: n/a | iter time: 314.08 ms (step) remaining time: 2 days, 18:03:14

# ...

Epoch 1 | iter 780800 step 3050 | loss train: 3.176, val: 3.554 | iter time: 314.97 ms (step) remaining time: 0:15:21

Epoch 1 | iter 781056 step 3051 | loss train: 3.207, val: 3.554 | iter time: 315.53 ms (step) remaining time: 0:14:05

Epoch 1 | iter 781312 step 3052 | loss train: 3.186, val: 3.554 | iter time: 315.74 ms (step) remaining time: 0:12:48

Epoch 1 | iter 781568 step 3053 | loss train: 3.189, val: 3.554 | iter time: 315.17 ms (step) remaining time: 0:11:32

Epoch 1 | iter 781824 step 3054 | loss train: 3.305, val: 3.554 | iter time: 315.29 ms (step) remaining time: 0:10:15

Epoch 1 | iter 782080 step 3055 | loss train: 3.173, val: 3.554 | iter time: 315.11 ms (step) remaining time: 0:08:59

Epoch 1 | iter 782336 step 3056 | loss train: 3.223, val: 3.554 | iter time: 315.35 ms (step) remaining time: 0:07:42

Epoch 1 | iter 782592 step 3057 | loss train: 3.182, val: 3.554 | iter time: 315.18 ms (step) remaining time: 0:06:26

Epoch 1 | iter 782848 step 3058 | loss train: 3.196, val: 3.554 | iter time: 316.37 ms (step) remaining time: 0:05:09

Epoch 1 | iter 783104 step 3059 | loss train: 3.187, val: 3.554 | iter time: 315.86 ms (step) remaining time: 0:03:53

Epoch 1 | iter 783360 step 3060 | loss train: 3.163, val: 3.554 | iter time: 314.81 ms (step) remaining time: 0:02:36

Epoch 1 | iter 783616 step 3061 | loss train: 3.190, val: 3.554 | iter time: 315.23 ms (step) remaining time: 0:01:20

Epoch 2 | iter 783872 step 3062 | loss train: 3.239, val: 3.554 | iter time: 317.71 ms (step) remaining time: 0:00:03

Validating ...

Final evaluation | val loss: 3.552 | val ppl: 34.896

Saving checkpoint to '../out/pretrain-core/final/lit_model.pth'

----------------------------------------

| Performance

| - Total tokens  : 6,421,577,728

| - Training Time : 234340.96 s

| - Tok/sec       : 17286.07 tok/s

| ----------------------------------------

| Memory Usage

| - Memory Used   : 17.30 GB

----------------------------------------

```

Backup `wandb`:

```bash

mv wandb wandb-pretrain-core

```

Chat with model:

```bash

CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt chat ../out/pretrain-core/final

```

```bash

CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True time litgpt evaluate --tasks 'leaderboard' --out_dir '../evaluate/pretrain-core-0/leaderboard/' --batch_size 1 --dtype 'bfloat16' '../out/pretrain-core/final'

```

```

# ...

```