cpt core 4
Browse files
README.md
CHANGED
|
@@ -400,7 +400,12 @@ litgpt convert_pretrained_checkpoint ../out/pretrain-core-3/final ../out/pretrai
|
|
| 400 |
```
|
| 401 |
|
| 402 |
```bash
|
| 403 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
```
|
| 405 |
|
| 406 |
```
|
|
|
|
| 400 |
```
|
| 401 |
|
| 402 |
```bash
|
| 403 |
+
litgpt convert_from_litgpt ../out/pretrain-core-3/final ../out/pretrain-core-3/hf
|
| 404 |
+
cp ../config-3.json ../out/pretrain-core-3/hf/config.json
|
| 405 |
+
```
|
| 406 |
+
|
| 407 |
+
```bash
|
| 408 |
+
CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0
|
| 409 |
```
|
| 410 |
|
| 411 |
```
|
scripts/{pretrain_core_model_4.yaml → backup/pretrain_core_model_4.yaml}
RENAMED
|
File without changes
|
scripts/{backup/cpt_base_model.py → cpt_core_model_4.py}
RENAMED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
from unsloth import FastLanguageModel
|
| 2 |
import torch
|
| 3 |
-
from transformers import AutoTokenizer
|
| 4 |
|
| 5 |
-
max_seq_length =
|
| 6 |
dtype = torch.bfloat16
|
| 7 |
load_in_4bit = True
|
| 8 |
-
model_name = '../out/pretrain-
|
| 9 |
-
output_dir = '../out/cpt-
|
| 10 |
|
| 11 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 12 |
model_name=model_name,
|
|
@@ -15,32 +15,33 @@ model, tokenizer = FastLanguageModel.from_pretrained(
|
|
| 15 |
load_in_4bit=load_in_4bit,
|
| 16 |
)
|
| 17 |
|
| 18 |
-
print('Ignore loaded tokenizer by FastLanguageModel.from_pretrained and using AutoTokenizer.from_pretrained')
|
| 19 |
-
tokenizer = AutoTokenizer.from_pretrained('..', trust_remote_code=True, use_fast=True)
|
| 20 |
-
|
| 21 |
print(f'{model=}')
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
model = FastLanguageModel.get_peft_model(
|
| 25 |
model,
|
| 26 |
-
r=
|
| 27 |
-
target_modules=[
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
bias='none', # Supports any, but = "none" is optimized
|
| 35 |
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
| 36 |
-
use_gradient_checkpointing=
|
| 37 |
-
random_state=
|
| 38 |
-
use_rslora=True, # We support rank stabilized LoRA
|
| 39 |
-
loftq_config=None, # And LoftQ
|
| 40 |
)
|
| 41 |
|
| 42 |
print(f'{model=}')
|
| 43 |
|
|
|
|
| 44 |
from datasets import concatenate_datasets
|
| 45 |
from cpt_base_datasets import cpt_base_datasets
|
| 46 |
from cpt_instruct_datasets import cpt_instruct_datasets
|
|
@@ -60,8 +61,9 @@ for dataset_config in cpt_base_datasets:
|
|
| 60 |
|
| 61 |
final_dataset = concatenate_datasets(core_datasets)
|
| 62 |
print(f'{final_dataset=}')
|
|
|
|
| 63 |
|
| 64 |
-
|
| 65 |
from trl import SFTTrainer
|
| 66 |
from transformers import TrainingArguments
|
| 67 |
from unsloth import is_bfloat16_supported
|
|
@@ -99,3 +101,4 @@ trainer = UnslothTrainer(
|
|
| 99 |
)
|
| 100 |
|
| 101 |
trainer_stats = trainer.train()
|
|
|
|
|
|
| 1 |
from unsloth import FastLanguageModel
|
| 2 |
import torch
|
| 3 |
+
# from transformers import AutoTokenizer
|
| 4 |
|
| 5 |
+
max_seq_length = 16384
|
| 6 |
dtype = torch.bfloat16
|
| 7 |
load_in_4bit = True
|
| 8 |
+
model_name = '../out/pretrain-core-3/hf'
|
| 9 |
+
output_dir = '../out/cpt-core-4'
|
| 10 |
|
| 11 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 12 |
model_name=model_name,
|
|
|
|
| 15 |
load_in_4bit=load_in_4bit,
|
| 16 |
)
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
print(f'{model=}')
|
| 19 |
+
|
| 20 |
+
# print('Ignore loaded tokenizer by FastLanguageModel.from_pretrained and using AutoTokenizer.from_pretrained')
|
| 21 |
+
# tokenizer = AutoTokenizer.from_pretrained('..', trust_remote_code=True, use_fast=True)
|
| 22 |
+
|
| 23 |
+
# print(f'{tokenizer=}')
|
| 24 |
|
| 25 |
model = FastLanguageModel.get_peft_model(
|
| 26 |
model,
|
| 27 |
+
r = 256, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
| 28 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
| 29 |
+
"gate_proj",
|
| 30 |
+
"up_proj", "down_proj",
|
| 31 |
+
"embed_tokens", "lm_head",],
|
| 32 |
+
lora_alpha = 32,
|
| 33 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
| 34 |
+
bias = "none", # Supports any, but = "none" is optimized
|
|
|
|
| 35 |
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
| 36 |
+
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
|
| 37 |
+
random_state = 3407,
|
| 38 |
+
use_rslora = True, # We support rank stabilized LoRA
|
| 39 |
+
loftq_config = None, # And LoftQ
|
| 40 |
)
|
| 41 |
|
| 42 |
print(f'{model=}')
|
| 43 |
|
| 44 |
+
'''
|
| 45 |
from datasets import concatenate_datasets
|
| 46 |
from cpt_base_datasets import cpt_base_datasets
|
| 47 |
from cpt_instruct_datasets import cpt_instruct_datasets
|
|
|
|
| 61 |
|
| 62 |
final_dataset = concatenate_datasets(core_datasets)
|
| 63 |
print(f'{final_dataset=}')
|
| 64 |
+
'''
|
| 65 |
|
| 66 |
+
'''
|
| 67 |
from trl import SFTTrainer
|
| 68 |
from transformers import TrainingArguments
|
| 69 |
from unsloth import is_bfloat16_supported
|
|
|
|
| 101 |
)
|
| 102 |
|
| 103 |
trainer_stats = trainer.train()
|
| 104 |
+
'''
|