Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,199 +1,146 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
-
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
[
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
|
185 |
-
|
186 |
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
##
|
190 |
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
-
##
|
194 |
|
195 |
-
|
|
|
|
|
196 |
|
197 |
-
##
|
198 |
|
199 |
-
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: allenai/longformer-base-4096
|
4 |
+
tags:
|
5 |
+
- text-classification
|
6 |
+
- ai-generated-text-detection
|
7 |
+
- social-media
|
8 |
+
- longformer
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
datasets:
|
12 |
+
- tarryzhang/AIGTBench
|
13 |
+
metrics:
|
14 |
+
- accuracy
|
15 |
+
- f1
|
16 |
library_name: transformers
|
17 |
+
pipeline_tag: text-classification
|
18 |
---
|
19 |
|
20 |
+
# OSM-Det: Online Social Media Detector
|
|
|
|
|
21 |
|
22 |
+
## Model Description
|
23 |
|
24 |
+
**OSM-Det** (Online Social Media Detector) is a state-of-the-art AI-generated text detection model specifically designed for social media content. This model is introduced in the paper "[*Are We in the AI-Generated Text World Already? Quantifying and Monitoring AIGT on Social Media*](https://arxiv.org/abs/2412.18148)".
|
25 |
|
26 |
## Model Details
|
27 |
|
28 |
+
- **Base Model**: [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096)
|
29 |
+
- **Model Type**: Text Classification (Binary)
|
30 |
+
- **Architecture**: Longformer with classification head
|
31 |
+
- **Max Sequence Length**: 4096 tokens
|
32 |
+
- **Training Data**: [AIGTBench](https://huggingface.co/datasets/tarryzhang/AIGTBench)
|
33 |
+
|
34 |
+
### Quick Start
|
35 |
+
|
36 |
+
```python
|
37 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
38 |
+
import torch
|
39 |
+
|
40 |
+
# Load model and tokenizer
|
41 |
+
model = AutoModelForSequenceClassification.from_pretrained("tarryzhang/OSM-Det")
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained("tarryzhang/OSM-Det")
|
43 |
+
|
44 |
+
# Example text
|
45 |
+
text = "Your text to analyze here..."
|
46 |
+
|
47 |
+
# Tokenize and predict
|
48 |
+
inputs = tokenizer(text, return_tensors="pt", max_length=4096, truncation=True, padding=True)
|
49 |
+
with torch.no_grad():
|
50 |
+
outputs = model(**inputs)
|
51 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
52 |
+
predicted_class = torch.argmax(predictions, dim=1).item()
|
53 |
+
|
54 |
+
# Interpret results
|
55 |
+
labels = ["Human-written", "AI-generated"]
|
56 |
+
confidence = predictions[0][predicted_class].item()
|
57 |
+
|
58 |
+
print(f"Prediction: {labels[predicted_class]}")
|
59 |
+
print(f"Confidence: {confidence:.3f}")
|
60 |
+
```
|
61 |
+
|
62 |
+
### Batch Processing
|
63 |
+
|
64 |
+
```python
|
65 |
+
def detect_ai_text_batch(texts, model, tokenizer, max_length=4096, batch_size=32):
|
66 |
+
results = []
|
67 |
+
|
68 |
+
for i in range(0, len(texts), batch_size):
|
69 |
+
batch_texts = texts[i:i+batch_size]
|
70 |
+
|
71 |
+
# Tokenize batch
|
72 |
+
inputs = tokenizer(
|
73 |
+
batch_texts,
|
74 |
+
return_tensors="pt",
|
75 |
+
max_length=max_length,
|
76 |
+
truncation=True,
|
77 |
+
padding=True
|
78 |
+
)
|
79 |
+
|
80 |
+
# Predict
|
81 |
+
with torch.no_grad():
|
82 |
+
outputs = model(**inputs)
|
83 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
84 |
+
predicted_classes = torch.argmax(predictions, dim=1)
|
85 |
+
|
86 |
+
# Store results
|
87 |
+
for j, text in enumerate(batch_texts):
|
88 |
+
pred_class = predicted_classes[j].item()
|
89 |
+
confidence = predictions[j][pred_class].item()
|
90 |
+
results.append({
|
91 |
+
'text': text,
|
92 |
+
'prediction': 'AI-generated' if pred_class == 1 else 'Human-written',
|
93 |
+
'confidence': confidence,
|
94 |
+
'ai_probability': predictions[j][1].item(),
|
95 |
+
'human_probability': predictions[j][0].item()
|
96 |
+
})
|
97 |
+
|
98 |
+
return results
|
99 |
+
```
|
100 |
+
|
101 |
+
## Labels
|
102 |
+
|
103 |
+
- **0**: Human-written text
|
104 |
+
- **1**: AI-generated text
|
105 |
|
106 |
## Training Details
|
107 |
|
108 |
### Training Data
|
109 |
|
110 |
+
OSM-Det was trained on [AIGTBench](https://huggingface.co/datasets/tarryzhang/AIGTBench), which includes:
|
111 |
+
- **28.77M AI-generated samples** from 12 different LLMs
|
112 |
+
- **13.55M human-written samples**
|
113 |
+
- Content from **Medium, Quora, and Reddit** platforms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
### Training Configuration
|
116 |
|
117 |
+
- **Base Model**: Longformer-base-4096
|
118 |
+
- **Training Epochs**: 10
|
119 |
+
- **Batch Size**: 5 per device
|
120 |
+
- **Gradient Accumulation**: 8 steps
|
121 |
+
- **Learning Rate**: 2e-5
|
122 |
+
- **Weight Decay**: 0.01
|
123 |
+
- **Max Sequence Length**: 4096 tokens
|
124 |
|
125 |
+
## Citation
|
126 |
|
127 |
+
```bibtex
|
128 |
+
@inproceedings{SZSZLBZH25,
|
129 |
+
title = {{Are We in the AI-Generated Text World Already? Quantifying and Monitoring AIGT on Social Media}},
|
130 |
+
author = {Zhen Sun and Zongmin Zhang and Xinyue Shen and Ziyi Zhang and Yule Liu and Michael Backes and Yang Zhang and Xinlei He},
|
131 |
+
booktitle = {{Annual Meeting of the Association for Computational Linguistics (ACL)}},
|
132 |
+
pages = {},
|
133 |
+
publisher ={ACL},
|
134 |
+
year = {2025}
|
135 |
+
}
|
136 |
+
```
|
137 |
|
138 |
+
## Contact
|
139 |
|
140 |
+
- **Paper**: https://arxiv.org/abs/2412.18148
|
141 |
+
- **Dataset**: https://huggingface.co/datasets/tarryzhang/AIGTBench
|
142 |
+
- **Contact**: [email protected]
|
143 |
|
144 |
+
## License
|
145 |
|
146 |
+
Apache 2.0
|