tarryzhang commited on
Commit
958f15a
·
verified ·
1 Parent(s): 4296614

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +124 -177
README.md CHANGED
@@ -1,199 +1,146 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
 
 
 
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: allenai/longformer-base-4096
4
+ tags:
5
+ - text-classification
6
+ - ai-generated-text-detection
7
+ - social-media
8
+ - longformer
9
+ language:
10
+ - en
11
+ datasets:
12
+ - tarryzhang/AIGTBench
13
+ metrics:
14
+ - accuracy
15
+ - f1
16
  library_name: transformers
17
+ pipeline_tag: text-classification
18
  ---
19
 
20
+ # OSM-Det: Online Social Media Detector
 
 
21
 
22
+ ## Model Description
23
 
24
+ **OSM-Det** (Online Social Media Detector) is a state-of-the-art AI-generated text detection model specifically designed for social media content. This model is introduced in the paper "[*Are We in the AI-Generated Text World Already? Quantifying and Monitoring AIGT on Social Media*](https://arxiv.org/abs/2412.18148)".
25
 
26
  ## Model Details
27
 
28
+ - **Base Model**: [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096)
29
+ - **Model Type**: Text Classification (Binary)
30
+ - **Architecture**: Longformer with classification head
31
+ - **Max Sequence Length**: 4096 tokens
32
+ - **Training Data**: [AIGTBench](https://huggingface.co/datasets/tarryzhang/AIGTBench)
33
+
34
+ ### Quick Start
35
+
36
+ ```python
37
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
38
+ import torch
39
+
40
+ # Load model and tokenizer
41
+ model = AutoModelForSequenceClassification.from_pretrained("tarryzhang/OSM-Det")
42
+ tokenizer = AutoTokenizer.from_pretrained("tarryzhang/OSM-Det")
43
+
44
+ # Example text
45
+ text = "Your text to analyze here..."
46
+
47
+ # Tokenize and predict
48
+ inputs = tokenizer(text, return_tensors="pt", max_length=4096, truncation=True, padding=True)
49
+ with torch.no_grad():
50
+ outputs = model(**inputs)
51
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
52
+ predicted_class = torch.argmax(predictions, dim=1).item()
53
+
54
+ # Interpret results
55
+ labels = ["Human-written", "AI-generated"]
56
+ confidence = predictions[0][predicted_class].item()
57
+
58
+ print(f"Prediction: {labels[predicted_class]}")
59
+ print(f"Confidence: {confidence:.3f}")
60
+ ```
61
+
62
+ ### Batch Processing
63
+
64
+ ```python
65
+ def detect_ai_text_batch(texts, model, tokenizer, max_length=4096, batch_size=32):
66
+ results = []
67
+
68
+ for i in range(0, len(texts), batch_size):
69
+ batch_texts = texts[i:i+batch_size]
70
+
71
+ # Tokenize batch
72
+ inputs = tokenizer(
73
+ batch_texts,
74
+ return_tensors="pt",
75
+ max_length=max_length,
76
+ truncation=True,
77
+ padding=True
78
+ )
79
+
80
+ # Predict
81
+ with torch.no_grad():
82
+ outputs = model(**inputs)
83
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
84
+ predicted_classes = torch.argmax(predictions, dim=1)
85
+
86
+ # Store results
87
+ for j, text in enumerate(batch_texts):
88
+ pred_class = predicted_classes[j].item()
89
+ confidence = predictions[j][pred_class].item()
90
+ results.append({
91
+ 'text': text,
92
+ 'prediction': 'AI-generated' if pred_class == 1 else 'Human-written',
93
+ 'confidence': confidence,
94
+ 'ai_probability': predictions[j][1].item(),
95
+ 'human_probability': predictions[j][0].item()
96
+ })
97
+
98
+ return results
99
+ ```
100
+
101
+ ## Labels
102
+
103
+ - **0**: Human-written text
104
+ - **1**: AI-generated text
105
 
106
  ## Training Details
107
 
108
  ### Training Data
109
 
110
+ OSM-Det was trained on [AIGTBench](https://huggingface.co/datasets/tarryzhang/AIGTBench), which includes:
111
+ - **28.77M AI-generated samples** from 12 different LLMs
112
+ - **13.55M human-written samples**
113
+ - Content from **Medium, Quora, and Reddit** platforms
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
 
115
+ ### Training Configuration
116
 
117
+ - **Base Model**: Longformer-base-4096
118
+ - **Training Epochs**: 10
119
+ - **Batch Size**: 5 per device
120
+ - **Gradient Accumulation**: 8 steps
121
+ - **Learning Rate**: 2e-5
122
+ - **Weight Decay**: 0.01
123
+ - **Max Sequence Length**: 4096 tokens
124
 
125
+ ## Citation
126
 
127
+ ```bibtex
128
+ @inproceedings{SZSZLBZH25,
129
+ title = {{Are We in the AI-Generated Text World Already? Quantifying and Monitoring AIGT on Social Media}},
130
+ author = {Zhen Sun and Zongmin Zhang and Xinyue Shen and Ziyi Zhang and Yule Liu and Michael Backes and Yang Zhang and Xinlei He},
131
+ booktitle = {{Annual Meeting of the Association for Computational Linguistics (ACL)}},
132
+ pages = {},
133
+ publisher ={ACL},
134
+ year = {2025}
135
+ }
136
+ ```
137
 
138
+ ## Contact
139
 
140
+ - **Paper**: https://arxiv.org/abs/2412.18148
141
+ - **Dataset**: https://huggingface.co/datasets/tarryzhang/AIGTBench
142
+ - **Contact**: [email protected]
143
 
144
+ ## License
145
 
146
+ Apache 2.0