tclong commited on
Commit
260eec5
·
1 Parent(s): df98f2c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-base-vios-google-colab
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-base-vios-google-colab
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.5647
18
+ - Wer: 0.4970
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 16
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 2
42
+ - total_train_batch_size: 32
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 1000
46
+ - num_epochs: 30
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 7.7292 | 2.0 | 500 | 3.4159 | 1.0 |
54
+ | 3.0762 | 4.0 | 1000 | 1.3005 | 0.9615 |
55
+ | 0.8812 | 6.0 | 1500 | 0.4664 | 0.4740 |
56
+ | 0.5076 | 8.0 | 2000 | 0.4101 | 0.4180 |
57
+ | 0.4075 | 10.0 | 2500 | 0.3815 | 0.3802 |
58
+ | 0.3724 | 12.0 | 3000 | 0.3785 | 0.3741 |
59
+ | 0.3762 | 14.0 | 3500 | 0.4404 | 0.3766 |
60
+ | 0.4541 | 16.0 | 4000 | 0.4671 | 0.3822 |
61
+ | 0.6391 | 18.0 | 4500 | 0.5643 | 0.4200 |
62
+ | 0.7681 | 20.0 | 5000 | 0.6564 | 0.5214 |
63
+ | 0.8131 | 22.0 | 5500 | 0.5786 | 0.4934 |
64
+ | 0.7448 | 24.0 | 6000 | 0.5561 | 0.4920 |
65
+ | 0.7337 | 26.0 | 6500 | 0.5631 | 0.4964 |
66
+ | 0.7359 | 28.0 | 7000 | 0.5647 | 0.4968 |
67
+ | 0.7397 | 30.0 | 7500 | 0.5647 | 0.4970 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.17.0
73
+ - Pytorch 1.11.0+cu113
74
+ - Datasets 1.18.3
75
+ - Tokenizers 0.12.1