File size: 17,628 Bytes
982d481 7302638 982d481 7302638 982d481 7302638 982d481 7302638 982d481 7302638 982d481 798e8a3 982d481 e568489 982d481 2085ce6 982d481 e568489 982d481 2085ce6 982d481 2085ce6 982d481 e568489 982d481 2085ce6 e568489 982d481 e568489 982d481 e568489 982d481 798e8a3 982d481 e568489 982d481 2085ce6 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 982d481 e568489 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
<p align="center">
<img src="https://dscache.tencent-cloud.cn/upload/uploader/hunyuan-64b418fd052c033b228e04bc77bbc4b54fd7f5bc.png" width="400"/> <br>
</p><p></p>
<p align="center">
🤗 <a href="https://huggingface.co/tencent/Hunyuan-A13B-Instruct"><b>Hugging Face</b></a> |
🖥️ <a href="https://hunyuan.tencent.com" style="color: red;"><b>Official Website</b></a> |
🕖 <a href="https://cloud.tencent.com/product/hunyuan"><b>HunyuanAPI</b></a> |
🕹️ <a href="https://hunyuan.tencent.com/?model=hunyuan-a13b"><b>Demo</b></a> |
🤖 <a href="https://modelscope.cn/models/Tencent-Hunyuan/Hunyuan-A13B-Instruct"><b>ModelScope</b></a>
</p>
<p align="center">
<a href="https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf"><b>Technical Report</b> </a> |
<a href="https://github.com/Tencent-Hunyuan/Hunyuan-A13B"><b>GITHUB</b></a> |
<a href="https://cnb.cool/tencent/hunyuan/Hunyuan-A13B"><b>cnb.cool</b></a> |
<a href="https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/LICENSE"><b>LICENSE</b></a> |
<a href="https://raw.githubusercontent.com/Tencent-Hunyuan/Hunyuan-A13B/main/assets/1751881231452.jpg"><b>WeChat</b></a> |
<a href="https://discord.gg/bsPcMEtV7v"><b>Discord</b></a>
</p>
## 模型介绍
随着人工智能技术的快速发展,大型语言模型(LLMs)在自然语言处理、计算机视觉和科学任务等领域取得了显著进展。然而,随着模型规模的扩大,如何在保持高性能的同时优化资源消耗成为一个关键挑战。为了应对这一挑战,我们研究了混合专家(MoE)模型,当前亮相的 Hunyuan-A13B 模型,拥有800亿总参数和130亿激活参数。不仅在效果上达到了高标准,而且在尺寸上也做到了极致的优化,成功平衡了模型性能与资源占用。
### 核心特性与优势
- **小参数量,高性能**:仅激活130亿参数(总参数量800亿),即可在多样化基准任务中媲美更大规模模型的竞争力表现
- **混合推理支持**:同时支持快思考和慢思考两种模式,支持用户灵活选择
- **超长上下文理解**:原生支持256K上下文窗口,在长文本任务中保持稳定性能
- **增强Agent能力**:优化Agent能力,在BFCL-v3、τ-Bench等智能体基准测试中领先
- **高效推理**:采用分组查询注意力(GQA)策略,支持多量化格式,实现高效推理
### 为何选择Hunyuan-A13B?
作为兼具强大性能与计算效率的大模型,Hunyuan-A13B是研究者与开发者在资源受限条件下追求高性能的理想选择。无论学术研究、高性价比AI解决方案开发,还是创新应用探索,本模型都能提供强大的基础支持。
## 新闻
<br>
* 2025.6.26 我们在Hugging Face开源了 **Hunyuan-A13B-Instruct**,**Hunyuan-A13B-Pretrain**, **Hunyuan-A13B-Instruct-FP8**, **Hunyuan-A13B-Instruct-GPTQ-Int4**。并发布了技术报告和训练推理操作手册,详细介绍了模型能力和训练与推理的操作。
## 模型结构
Hunyuan-A13B采用了细粒度混合专家(Fine-grained Mixture of Experts,Fine-grained MoE)架构,包含800亿参数和130亿激活参数,累计训练了超过 20T tokens。该模型支持 256K 的上下文长度,以下为模型结构细节:
* 总参数: 80B
* 激活参数: 13B
* 层数: 32
* Attention Heads: 32
* 共享专家数: 1
* 非共享专家数: 64
* 路由策略: Top-8
* 激活函数: SwiGLU
* 隐层维度: 4096
* 专家隐层维度: 3072
## Benchmark评估榜单
**Hunyuan-A13B-Pretrain** 在 12/14 个任务上超越了Hunyuan上一代52B激活参数的MoE模型Hunyuan-Large,证实了它在预训练任务上出色的能力。与业界更大参数量的Dense和MoE模型相比, Hunyuan-A13B在多个代码和数学任务上都取得了最高分数。在MMLU, MMLU-PRO等诸多众聚合任务上, Hunyuan-A13B达到了与Qwen3-A22B模型同等的水平,表现出优秀的综合能力。
| Model | Hunyuan-Large | Qwen2.5-72B | Qwen3-A22B | Hunyuan-A13B |
|------------------|---------------|--------------|-------------|---------------|
| MMLU | 88.40 | 86.10 | 87.81 | 88.17 |
| MMLU-Pro | 60.20 | 58.10 | 68.18 | 67.23 |
| MMLU-Redux | 87.47 | 83.90 | 87.40 | 87.67 |
| BBH | 86.30 | 85.80 | 88.87 | 87.56 |
| SuperGPQA | 38.90 | 36.20 | 44.06 | 41.32 |
| EvalPlus | 75.69 | 65.93 | 77.60 | 78.64 |
| MultiPL-E | 59.13 | 60.50 | 65.94 | 69.33 |
| MBPP | 72.60 | 76.00 | 81.40 | 83.86 |
| CRUX-I | 57.00 | 57.63 | - | 70.13 |
| CRUX-O | 60.63 | 66.20 | 79.00 | 77.00 |
| MATH | 69.80 | 62.12 | 71.84 | 72.35 |
| CMATH | 91.30 | 84.80 | - | 91.17 |
| GSM8k | 92.80 | 91.50 | 94.39 | 91.83 |
| GPQA | 25.18 | 45.90 | 47.47 | 49.12 |
**Hunyuan-A13B-Instruct** 在多项基准测试中取得了极具有竞争力的表现,尤其是在数学、科学、agent等领域。我们与一些强力模型进行了对比,结果如下所示。
| Topic | Bench | OpenAI-o1-1217 | DeepSeek R1 | Qwen3-A22B | Hunyuan-A13B-Instruct |
|:-------------------:|:-----------------------------:|:-------------:|:------------:|:-----------:|:---------------------:|
| **Mathematics** | AIME 2024<br>AIME 2025<br>MATH | 74.3<br>79.2<br>96.4 | 79.8<br>70<br>94.9 | 85.7<br>81.5<br>94.0 | 87.3<br>76.8<br>94.3 |
| **Science** | GPQA-Diamond<br>OlympiadBench | 78<br>83.1 | 71.5<br>82.4 | 71.1<br>85.7 | 71.2<br>82.7 |
| **Coding** | Livecodebench<br>Fullstackbench<br>ArtifactsBench | 63.9<br>64.6<br>38.6 | 65.9<br>71.6<br>44.6 | 70.7<br>65.6<br>44.6 | 63.9<br>67.8<br>43 |
| **Reasoning** | BBH<br>DROP<br>ZebraLogic | 80.4<br>90.2<br>81 | 83.7<br>92.2<br>78.7 | 88.9<br>90.3<br>80.3 | 89.1<br>91.1<br>84.7 |
| **Instruction<br>Following** | IF-Eval<br>SysBench | 91.8<br>82.5 | 88.3<br>77.7 | 83.4<br>74.2 | 84.7<br>76.1 |
| **Text<br>Creation**| LengthCtrl<br>InsCtrl | 60.1<br>74.8 | 55.9<br>69 | 53.3<br>73.7 | 55.4<br>71.9 |
| **NLU** | ComplexNLU<br>Word-Task | 64.7<br>67.1 | 64.5<br>76.3 | 59.8<br>56.4 | 61.2<br>62.9 |
| **Agent** | BDCL v3<br> τ-Bench<br>ComplexFuncBench<br> $C^3$-Bench | 67.8<br>60.4<br>47.6<br>58.8 | 56.9<br>43.8<br>41.1<br>55.3 | 70.8<br>44.6<br>40.6<br>51.7 | 78.3<br>54.7<br>61.2<br>63.5 |
## transformers推理
我们的模型默认使用“慢思考”(即推理模式),有两种方式可以关闭 CoT(Chain-of-Thought,思维链)推理:
1. 在调用 `apply_chat_template` 时传入参数 `"enable_thinking=False"`。
2. 在提示词(prompt)前加上 `/no_think` 可以强制模型不使用 CoT 推理。类似地,在提示词前加上 `/think` 则会强制模型启用 CoT 推理。
以下代码片段展示了如何使用 `transformers` 库加载并应用该模型。
它还演示了如何开启和关闭推理模式,
以及如何解析推理过程和最终输出。
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import re
model_name_or_path = os.environ['MODEL_PATH']
# model_name_or_path = "tencent/Hunyuan-A13B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto",trust_remote_code=True) # You may want to use bfloat16 and/or move to GPU here
messages = [
{"role": "user", "content": "Write a short summary of the benefits of regular exercise"},
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
enable_thinking=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
model_inputs.pop("token_type_ids", None)
outputs = model.generate(**model_inputs, max_new_tokens=4096)
output_text = tokenizer.decode(outputs[0])
think_pattern = r'<think>(.*?)</think>'
think_matches = re.findall(think_pattern, output_text, re.DOTALL)
answer_pattern = r'<answer>(.*?)</answer>'
answer_matches = re.findall(answer_pattern, output_text, re.DOTALL)
think_content = [match.strip() for match in think_matches][0]
answer_content = [match.strip() for match in answer_matches][0]
print(f"thinking_content:{think_content}\n\n")
print(f"answer_content:{answer_content}\n\n")
```
### 快速思考与慢速思考切换
本模型支持两种运行模式:
- **慢速思考模式(默认)**:在生成最终答案之前进行详细的内部推理步骤。
- **快速思考模式**:跳过内部推理过程,直接输出最终答案,从而实现更快的推理速度。
**切换到快速思考模式的方法:**
要禁用推理过程,请在调用 `apply_chat_template` 时设置 `enable_thinking=False`:
```python
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
enable_thinking=False # 使用快速思考模式
)
```
## 推理和部署
HunyuanLLM可以采用vLLM,sglang或TensorRT-LLM部署。为了简化部署过程HunyuanLLM提供了预构建docker镜像。
## 使用TensorRT-LLM推理
### BF16部署
#### Step1:执行推理
#### 方式1:命令行推理
下面我们展示一个代码片段,采用`TensorRT-LLM`快速请求chat model:
修改 examples/pytorch/quickstart_advanced.py 中如下代码:
```python
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import (EagleDecodingConfig, KvCacheConfig,
MTPDecodingConfig)
prompt = "Write a short summary of the benefits of regular exercise"
def main():
args = parse_arguments()
llm, sampling_params = setup_llm(args)
new_prompts = []
if args.apply_chat_template:
messages = [{"role": "user", "content": f"{prompt}"}]
new_prompts.append(llm.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True)
)
outputs = llm.generate(new_prompts, sampling_params)
for i, output in enumerate(outputs):
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"[{i}] Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
运行方式:
```shell
python3 quickstart_advanced.py --model_dir "HunyuanLLM模型路径" --tp_size 4 --apply_chat_template
```
#### 方式2:服务化推理
下面我们展示使用`TensorRT-LLM`服务化的方式部署模型和请求。
```shell
model_path="HunyuanLLM模型路径"
trtllm-serve <model_path> [--backend pytorch --tp_size <tp> --ep_size <ep> --host <host> --port <port>]
```
服务启动成功后, 运行请求脚本:
```python
### OpenAI Chat Client
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="tensorrt_llm",
)
response = client.chat.completions.create(
model="default",
messages=[{
"role": "user",
"content": "Write a short summary of the benefits of regular exercise"
}],
max_tokens=4096,
)
print(response)
```
#### FP8/Int4量化模型部署:
目前 TensorRT-LLM 的 fp8 和 int4 量化模型正在支持中,敬请期待。
## vLLM 部署
### Docker 镜像推理
我们提供了一个基于官方 vLLM 0.8.5 版本的 Docker 镜像方便快速部署和测试。**注意:该镜像要求使用 CUDA 12.4 版本。**
- 首先,下载 Docker 镜像文件:
**从Docker Hub下载**:
```
docker pull hunyuaninfer/hunyuan-infer-vllm-cuda12.4:v1
```
**中国国内镜像**:
考虑到下载速度, 也可以选择从 CNB 下载镜像,感谢[CNB云原生构建](https://cnb.cool/)提供支持:
1. 下载镜像
```
docker pull docker.cnb.cool/tencent/hunyuan/hunyuan-a13b/hunyuan-infer-vllm-cuda12.4:v1
```
2. 然后更名镜像(可选,更好的和下面脚本名字匹配)
```
docker tag docker.cnb.cool/tencent/hunyuan/hunyuan-a13b/hunyuan-infer-vllm-cuda12.4:v1 hunyuaninfer/hunyuan-infer-vllm-cuda12.4:v1
```
- 下载模型文件:
- Huggingface:vLLM 会自动下载。
- ModelScope:`modelscope download --model Tencent-Hunyuan/Hunyuan-A13B-Instruct`
- 启动 API 服务(从 Huggingface 下载模型):
```bash
docker run --rm --ipc=host \
-v ~/.cache:/root/.cache/ \
--security-opt seccomp=unconfined \
--net=host \
--gpus=all \
-it \
--entrypoint python3 hunyuaninfer/hunyuan-infer-vllm-cuda12.4:v1 \
-m vllm.entrypoints.openai.api_server \
--host 0.0.0.0 \
--tensor-parallel-size 4 \
--port 8000 \
--model tencent/Hunyuan-A13B-Instruct \
--trust_remote_code
```
- 启动 API 服务(从 ModelScope 下载模型):
```bash
docker run --rm --ipc=host \
-v ~/.cache/modelscope:/root/.cache/modelscope \
--security-opt seccomp=unconfined \
--net=host \
--gpus=all \
-it \
--entrypoint python3 hunyuaninfer/hunyuan-infer-vllm-cuda12.4:v1 \
-m vllm.entrypoints.openai.api_server \
--host 0.0.0.0 \
--tensor-parallel-size 4 \
--port 8000 \
--model /root/.cache/modelscope/hub/models/Tencent-Hunyuan/Hunyuan-A13B-Instruct/ \
--trust_remote_code
```
### 源码部署
对本模型的支持已通过 [PR 20114](https://github.com/vllm-project/vllm/pull/20114) 提交至 vLLM 项目并已经合并, 可以使用 vllm git commit`ecad85`以后的版本进行源代码编译。
### 模型上下文长度支持
Hunyuan A13B 模型支持最大 **256K token(262,144 Token)** 的上下文长度。但由于大多数 GPU 硬件配置的显存限制,默认 `config.json` 中将上下文长度限制为 **32K token**,以避免出现显存溢出(OOM)问题。
#### 将上下文长度扩展至 256K
如需启用完整的 256K 上下文支持,请手动修改模型 `config.json` 文件中的 `max_position_embeddings` 字段如下:
```json
{
...
"max_position_embeddings": 262144,
...
}
```
当使用 **vLLM** 进行服务部署时,也可以通过添加以下参数来明确设置最大模型长度:
```bash
--max-model-len 262144
```
#### 推荐的 256K 上下文长度配置
以下是在配备 **NVIDIA H20 显卡(96GB 显存)** 的系统上部署 256K 上下文长度服务的推荐配置:
| 模型数据类型 | KV-Cache 数据类型 | 设备数量 | 模型长度 |
|----------------|-------------------|------------|--------------|
| `bfloat16` | `bfloat16` | 4 | 262,144 |
> ⚠️ **注意:** 使用 FP8 对 KV-cache 进行量化可能会影响生成质量。上述配置是用于稳定部署 256K 长度服务的建议设置。
### 使用 vLLM 调用工具
为了支持基于 Agent 的工作流和函数调用能力,本模型包含专门的解析机制,用于处理工具调用及内部推理步骤。
关于如何在 Agent 场景中实现和使用这些功能的完整示例,请参见我们的 GitHub 示例代码:
🔗 [Hunyuan A13B Agent 示例](https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/agent/)
在使用 **vLLM** 部署模型时,可以使用以下参数配置工具解析行为:
| 参数名 | 值 |
|-------------------------|--------------------------------------------------------------------|
| `--tool-parser-plugin` | [本地 Hunyuan A13B 工具解析器文件](https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/agent/hunyuan_tool_parser.py) |
| `--tool-call-parser` | `hunyuan` |
这些设置可使 vLLM 根据预期格式正确解析和路由模型生成的工具调用。
### Reasoning Parser(推理解析器)
目前,Hunyuan A13B 模型在 vLLM 中的推理解析器支持仍在开发中。
## SGLang
### Docker 镜像
我们还提供基于 SGLang 最新版本构建的 Docker 镜像。
快速开始方式如下:
- 拉取 Docker 镜像:
```
docker pull docker.cnb.cool/tencent/hunyuan/hunyuan-a13b:hunyuan-moe-A13B-sglang
或
docker pull hunyuaninfer/hunyuan-a13b:hunyuan-moe-A13B-sglang
```
- 启动 API 服务:
```bash
docker run --gpus all \
--shm-size 32g \
-p 30000:30000 \
--ipc=host \
docker.cnb.cool/tencent/hunyuan/hunyuan-a13b:hunyuan-moe-A13B-sglang \
-m sglang.launch_server --model-path hunyuan/huanyuan_A13B --tp 4 --trust-remote-code --host 0.0.0.0 --port 30000
```
## 交互式Demo Web
hunyuan-A13B 现已开放网页demo。访问 https://hunyuan.tencent.com/?model=hunyuan-a13b 即可简单体验我们的模型。
## 联系我们
如果你想给我们的研发和产品团队留言,欢迎联系我们腾讯混元LLM团队。你可以通过邮件(hunyuan[email protected])联系我们。
|