File size: 11,675 Bytes
d9be242 2f3b790 d9be242 2f3b790 d9be242 2f3b790 d9be242 2f3b790 d9be242 2f3b790 d9be242 2f3b790 d9be242 8a1e923 d9be242 2f3b790 d9be242 361b84f d9be242 361b84f d9be242 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
---
language:
- en
- zh
library_name: diffusers
license: other
license_name: tencent-hunyuan-community
license_link: https://github.com/Tencent-Hunyuan/Hunyuan3D-2.1/blob/main/LICENSE
pipeline_tag: image-to-3d
tags:
- image-to-3d
- text-to-3d
---
This model was presented in the paper [Hunyuan3D 2.1: From Images to High-Fidelity 3D Assets with Production-Ready PBR Material](https://huggingface.co/papers/2506.15442).
## Abstract
3D AI-generated content (AIGC) is a passionate field that has significantly accelerated the creation of 3D models in gaming, film, and design. Despite the development of several groundbreaking models that have revolutionized 3D generation, the field remains largely accessible only to researchers, developers, and designers due to the complexities involved in collecting, processing, and training 3D models. To address these challenges, we introduce Hunyuan3D 2.1 as a case study in this tutorial. This tutorial offers a comprehensive, step-by-step guide on processing 3D data, training a 3D generative model, and evaluating its performance using Hunyuan3D 2.1, an advanced system for producing high-resolution, textured 3D assets. The system comprises two core components: the Hunyuan3D-DiT for shape generation and the Hunyuan3D-Paint for texture synthesis. We will explore the entire workflow, including data preparation, model architecture, training strategies, evaluation metrics, and deployment. By the conclusion of this tutorial, you will have the knowledge to finetune or develop a robust 3D generative model suitable for applications in gaming, virtual reality, and industrial design.
<p align="center">
<img src="https://raw.githubusercontent.com/Tencent-Hunyuan/Hunyuan3D-2.1/refs/heads/main/assets/images/teaser.jpg">
</p>
<div align="center">
<a href=https://3d.hunyuan.tencent.com target="_blank"><img src=https://img.shields.io/badge/Official%20Site-333399.svg?logo=homepage height=22px></a>
<a href=https://huggingface.co/spaces/tencent/Hunyuan3D-2.1 target="_blank"><img src=https://img.shields.io/badge/%F0%9F%A4%97%20Demo-276cb4.svg height=22px></a>
<a href=https://huggingface.co/tencent/Hunyuan3D-2.1 target="_blank"><img src=https://img.shields.io/badge/%F0%9F%A4%97%20Models-d96902.svg height=22px></a>
<a href=https://3d-models.hunyuan.tencent.com/ target="_blank"><img src= https://img.shields.io/badge/Page-bb8a2e.svg?logo=github height=22px></a>
<a href=https://discord.gg/dNBrdrGGMa target="_blank"><img src= https://img.shields.io/badge/Discord-white.svg?logo=discord height=22px></a>
<a href=https://arxiv.org/pdf/2506.15442 target="_blank"><img src=https://img.shields.io/badge/Report-b5212f.svg?logo=arxiv height=22px></a>
<a href=https://x.com/TencentHunyuan target="_blank"><img src=https://img.shields.io/badge/Hunyuan-black.svg?logo=x height=22px></a>
<a href="#community-resources" target="_blank"><img src=https://img.shields.io/badge/Community-lavender.svg?logo=homeassistantcommunitystore height=22px></a>
</div>
## π₯ News
- Jun 19, 2025: π We present the [technical report](https://arxiv.org/pdf/2506.15442) of Hunyuan3D-2.1, please check out the details and spark some discussion!
- Jun 13, 2025: π€ We release the first production-ready 3D asset generation model, Hunyuan3D-2.1!
> Join our **[Wechat](#)** and **[Discord](https://discord.gg/dNBrdrGGMa)** group to discuss and find help from us.
| Wechat Group | Xiaohongshu | X | Discord |
|--------------------------------------------------|-------------------------------------------------------|---------------------------------------------|---------------------------------------------------|
| <img src="assets/qrcode/wechat.png" height=140> | <img src="assets/qrcode/xiaohongshu.png" height=140> | <img src="assets/qrcode/x.png" height=140> | <img src="assets/qrcode/discord.png" height=140> |
## β―οΈ **Hunyuan3D 2.1**
### Architecture
Tencent Hunyuan3D-2.1 is a scalable 3D asset creation system that advances state-of-the-art 3D generation through two pivotal innovations: Fully Open-Source Framework and Physically-Based Rendering (PBR) Texture Synthesis. For the first time, the system releases full model weights and training code, enabling community developers to directly fine-tune and extend the model for diverse downstream applications. This transparency accelerates academic research and industrial deployment. Moreover, replacing the prior RGB-based texture model, the upgraded PBR pipeline leverages physics-grounded material simulation to generate textures with photorealistic light interaction (e.g., metallic reflections, subsurface scattering).
<p align="left">
<img src="assets/images/pipeline.png">
</p>
### Performance
We have evaluated Hunyuan3D 2.1 with other open-source as well as close-source 3d-generation methods.
The numerical results indicate that Hunyuan3D 2.1 surpasses all baselines in the quality of generated textured 3D assets
and the condition following ability.
| Model | ULIP-T(β¬) | ULIP-I(β¬) | Uni3D-T(β¬) | Uni3D-I(β¬) |
|-------------------------|-----------|-------------|-------------|---------------|
| Michelangelo | 0.0752 | 0.1152 | 0.2133 | 0.2611 |
| Craftsman | 0.0745 | 0.1296 | 0.2375 | 0.2987 |
| TripoSG | 0.0767 | 0.1225 | 0.2506 | 0.3129 |
| Step1X-3D | 0.0735 | 0.1183 | 0.2554 | 0.3195 |
| Trellis | 0.0769 | 0.1267 | 0.2496 | 0.3116 |
| Direct3D-S2 | 0.0706 | 0.1134 | 0.2346 | 0.2930 |
| Hunyuan3D-Shape-2.1 | **0.0774** | **0.1395** | **0.2556** | **0.3213** |
| Model | CLIP-FiD(β¬) | CMMD(β¬) | CLIP-I(β¬) | LPIPS(β¬) |
|-------------------------|-----------|-------------|-------------|---------------|
| SyncMVD-IPA | 28.39 | 2.397 | 0.8823 | 0.1423 |
| TexGen | 28.24 | 2.448 | 0.8818 | 0.1331 |
| Hunyuan3D-2.0 | 26.44 | 2.318 | 0.8893 | 0.1261 |
| Hunyuan3D-Paint-2.1 | **24.78** | **2.191** | **0.9207** | **0.1211** |
## π Models Zoo
It takes 10 GB VRAM for shape generation, 21GB for texture generation and 29GB for shape and texture generation in total.
| Model | Description | Date | Size | Huggingface |
|----------------------------|-----------------------------|------------|------|-------------------------------------------------------------------------------------------|
| Hunyuan3D-Shape-v2-1 | Image to Shape Model | 2025-06-14 | 3.3B | [Download](https://huggingface.co/tencent/Hunyuan3D-2.1/tree/main/hunyuan3d-dit-v2-1) |
| Hunyuan3D-Paint-v2-1 | Texture Generation Model | 2025-06-14 | 2B | [Download](https://huggingface.co/tencent/Hunyuan3D-2.1/tree/main/hunyuan3d-paint-v2-1) |
## π€ Get Started with Hunyuan3D 2.1
Hunyuan3D 2.1 supports Macos, Windows, Linux. You may follow the next steps to use Hunyuan3D 2.1 via:
### Install Requirements
We test our model on an A100 GPU with Python 3.10 and PyTorch 2.5.1+cu124.
```bash
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124
pip install -r requirements.txt
cd hy3dpaint/custom_rasterizer
pip install -e .
cd ../..
cd hy3dpaint/DifferentiableRenderer
bash compile_mesh_painter.sh
cd ../..
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P hy3dpaint/ckpt
```
### Code Usage
We designed a diffusers-like API to use our shape generation model - Hunyuan3D-Shape and texture synthesis model -
Hunyuan3D-Paint.
```python
import sys
sys.path.insert(0, './hy3dshape')
sys.path.insert(0, './hy3dpaint')
from textureGenPipeline import Hunyuan3DPaintPipeline
from textureGenPipeline import Hunyuan3DPaintPipeline, Hunyuan3DPaintConfig
from hy3dshape.pipelines import Hunyuan3DDiTFlowMatchingPipeline
# let's generate a mesh first
shape_pipeline = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained('tencent/Hunyuan3D-2.1')
mesh_untextured = shape_pipeline(image='assets/demo.png')[0]
paint_pipeline = Hunyuan3DPaintPipeline(Hunyuan3DPaintConfig(max_num_view=6, resolution=512))
mesh_textured = paint_pipeline(mesh_path, image_path='assets/demo.png')
```
### Gradio App
You could also host a [Gradio](https://www.gradio.app/) App in your own computer via:
```bash
python3 gradio_app.py \
--model_path tencent/Hunyuan3D-2.1 \
--subfolder hunyuan3d-dit-v2-1 \
--texgen_model_path tencent/Hunyuan3D-2.1 \
--low_vram_mode
```
## π BibTeX
If you found this repository helpful, please cite our report:
```bibtex
@misc{hunyuan3d2025hunyuan3d,
title={Hunyuan3D 2.1: From Images to High-Fidelity 3D Assets with Production-Ready PBR Material},
author={Team Hunyuan3D and Shuhui Yang and Mingxin Yang and Yifei Feng and Xin Huang and Sheng Zhang and Zebin He and Di Luo and Haolin Liu and Yunfei Zhao and Qingxiang Lin and Zeqiang Lai and Xianghui Yang and Huiwen Shi and Zibo Zhao and Bowen Zhang and Hongyu Yan and Lifu Wang and Sicong Liu and Jihong Zhang and Meng Chen and Liang Dong and Yiwen Jia and Yulin Cai and Jiaao Yu and Yixuan Tang and Dongyuan Guo and Junlin Yu and Hao Zhang and Zheng Ye and Peng He and Runzhou Wu and Shida Wei and Chao Zhang and Yonghao Tan and Yifu Sun and Lin Niu and Shirui Huang and Bojian Zheng and Shu Liu and Shilin Chen and Xiang Yuan and Xiaofeng Yang and Kai Liu and Jianchen Zhu and Peng Chen and Tian Liu and Di Wang and Yuhong Liu and Linus and Jie Jiang and Jingwei Huang and Chunchao Guo},
year={2025},
eprint={2506.15442},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{hunyuan3d22025tencent,
title={Hunyuan3D 2.0: Scaling Diffusion Models for High Resolution Textured 3D Assets Generation},
author={Tencent Hunyuan3D Team},
year={2025},
eprint={2501.12202},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{yang2024tencent,
title={Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation},
author={Tencent Hunyuan3D Team},
year={2024},
eprint={2411.02293},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
## Acknowledgements
We would like to thank the contributors to
the [TripoSG](https://github.com/VAST-AI-Research/TripoSG), [Trellis](https://github.com/microsoft/TRELLIS), [DINOv2](https://github.com/facebookresearch/dinov2), [Stable Diffusion](https://github.com/Stability-AI/stablediffusion), [FLUX](https://github.com/black-forest-labs/flux), [diffusers](https://github.com/huggingface/diffusers), [HuggingFace](https://huggingface.co), [CraftsMan3D](https://github.com/wyysf-98/CraftsMan3D),
and [Michelangelo](https://github.com/NeuralCarver/Michelangelo/tree/main) repositories, for their open research and
exploration.
## Star History
<a href="https://star-history.com/#Tencent-Hunyuan/Hunyuan3D-2.1&Date">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Tencent-Hunyuan/Hunyuan3D-2.1&type=Date&theme=dark" />
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Tencent-Hunyuan/Hunyuan3D-2.1&type=Date" />
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Tencent-Hunyuan/Hunyuan3D-2.1&type=Date" />
</picture>
</a> |