Create README.md
Browse files


)
README.md
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!-- ## **HunyuanVideo-Avatar** -->
|
2 |
+
|
3 |
+
<p align="center">
|
4 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/646d7592bb95b5d4001e5a04/HDZpvr8F-UaHAHlsF--fh.png" height=100>
|
5 |
+
</p>
|
6 |
+
|
7 |
+
<div align="center">
|
8 |
+
<a href="https://github.com/Tencent/HunyuanVideo-Avatar"><img src="https://img.shields.io/static/v1?label=HunyuanVideo-Avatar%20Code&message=Github&color=blue"></a>
|
9 |
+
<a href="https://HunyuanVideo-Avatar.github.io/"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Web&color=green"></a>
|
10 |
+
<a href="https://hunyuan.tencent.com/modelSquare/home/play?modelId=126"><img src="https://img.shields.io/static/v1?label=Playground&message=Web&color=green"></a>
|
11 |
+
<a href="https://arxiv.org/pdf/2505.20156"><img src="https://img.shields.io/static/v1?label=Tech Report&message=Arxiv&color=red"></a>
|
12 |
+
<a href="https://huggingface.co/tencent/HunyuanVideo-Avatar"><img src="https://img.shields.io/static/v1?label=HunyuanVideo-Avatar&message=HuggingFace&color=yellow"></a>
|
13 |
+
</div>
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+

|
18 |
+
|
19 |
+
> [**Tencent HunyuanVideo-Avatar: Dynamic and Consistent Audio-Driven Human Animation for Multiple Characters**](https://arxiv.org/pdf/2505.20156) <be>
|
20 |
+
|
21 |
+
## **Abstract**
|
22 |
+
|
23 |
+
Recent years have witnessed significant progress in audio-driven human animation. However, critical challenges remain in (i) generating highly dynamic videos while preserving character consistency, (ii) achieving precise emotion alignment between characters and audio, and (iii) enabling multi-character audio-driven animation. To address these challenges, we propose HunyuanVideo-Avatar, a multimodal diffusion transformer (MM-DiT)-based model capable of simultaneously generating dynamic, emotion-controllable, and multi-character dialogue videos. Concretely, HunyuanVideo-Avatar introduces three key innovations: (i) A character image injection module is designed to replace the conventional addition-based character conditioning scheme, eliminating the inherent condition mismatch between training and inference. This ensures the dynamic motion and strong character consistency; (ii) An Audio Emotion Module (AEM) is introduced to extract and transfer the emotional cues from an emotion reference image to the target generated video, enabling fine-grained and accurate emotion style control; (iii) A Face-Aware Audio Adapter (FAA) is proposed to isolate the audio-driven character with latent-level face mask, enabling independent audio injection via cross-attention for multi-character scenarios. These innovations empower HunyuanVideo-Avatar to surpass state-of-the-art methods on benchmark datasets and a newly proposed wild dataset, generating realistic avatars in dynamic, immersive scenarios. The source code and model weights will be released publicly.
|
24 |
+
|
25 |
+
## **HunyuanVideo-Avatar Overall Architecture**
|
26 |
+
|
27 |
+

|
28 |
+
|
29 |
+
We propose **HunyuanVideo-Avatar**, a multi-modal diffusion transformer(MM-DiT)-based model capable of generating **dynamic**, **emotion-controllable**, and **multi-character dialogue** videos.
|
30 |
+
|
31 |
+
## π **HunyuanVideo-Avatar Key Features**
|
32 |
+
|
33 |
+

|
34 |
+
|
35 |
+
### **High-Dynamic and Emotion-Controllable Video Generation**
|
36 |
+
|
37 |
+
HunyuanVideo-Avatar supports animating any input **avatar images** to **high-dynamic** and **emotion-controllable** videos with simple **audio conditions**. Specifically, it takes as input **multi-style** avatar images at **arbitrary scales and resolutions**. The system supports multi-style avatars encompassing photorealistic, cartoon, 3D-rendered, and anthropomorphic characters. Multi-scale generation spanning portrait, upper-body and full-body. It generates videos with high-dynamic foreground and background, achieving superior realistic and naturalness. In addition, the system supports controlling facial emotions of the characters conditioned on input audio.
|
38 |
+
|
39 |
+
### **Various Applications**
|
40 |
+
|
41 |
+
HunyuanVideo-Avatar supports various downstream tasks and applications. For instance, the system generates talking avatar videos, which could be applied to e-commerce, online streaming, social media video production, etc. In addition, its multi-character animation feature enlarges the application such as video content creation, editing, etc.
|
42 |
+
|
43 |
+
## π Parallel Inference on Multiple GPUs
|
44 |
+
|
45 |
+
For example, to generate a video with 8 GPUs, you can use the following command:
|
46 |
+
|
47 |
+
```bash
|
48 |
+
cd HunyuanVideo-Avatar
|
49 |
+
|
50 |
+
JOBS_DIR=$(dirname $(dirname "$0"))
|
51 |
+
export PYTHONPATH=./
|
52 |
+
export MODEL_BASE="./weights"
|
53 |
+
checkpoint_path=${MODEL_BASE}/ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt
|
54 |
+
|
55 |
+
torchrun --nnodes=1 --nproc_per_node=8 --master_port 29605 hymm_sp/sample_batch.py \
|
56 |
+
--input 'assets/test.csv' \
|
57 |
+
--ckpt ${checkpoint_path} \
|
58 |
+
--sample-n-frames 129 \
|
59 |
+
--seed 128 \
|
60 |
+
--image-size 704 \
|
61 |
+
--cfg-scale 7.5 \
|
62 |
+
--infer-steps 50 \
|
63 |
+
--use-deepcache 1 \
|
64 |
+
--flow-shift-eval-video 5.0 \
|
65 |
+
--save-path ${OUTPUT_BASEPATH}
|
66 |
+
```
|
67 |
+
|
68 |
+
## π Single-gpu Inference
|
69 |
+
|
70 |
+
For example, to generate a video with 1 GPU, you can use the following command:
|
71 |
+
|
72 |
+
```bash
|
73 |
+
cd HunyuanVideo-Avatar
|
74 |
+
|
75 |
+
JOBS_DIR=$(dirname $(dirname "$0"))
|
76 |
+
export PYTHONPATH=./
|
77 |
+
|
78 |
+
export MODEL_BASE=./weights
|
79 |
+
OUTPUT_BASEPATH=./results-single
|
80 |
+
checkpoint_path=${MODEL_BASE}/ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8.pt
|
81 |
+
|
82 |
+
export DISABLE_SP=1
|
83 |
+
CUDA_VISIBLE_DEVICES=0 python3 hymm_sp/sample_gpu_poor.py \
|
84 |
+
--input 'assets/test.csv' \
|
85 |
+
--ckpt ${checkpoint_path} \
|
86 |
+
--sample-n-frames 129 \
|
87 |
+
--seed 128 \
|
88 |
+
--image-size 704 \
|
89 |
+
--cfg-scale 7.5 \
|
90 |
+
--infer-steps 50 \
|
91 |
+
--use-deepcache 1 \
|
92 |
+
--flow-shift-eval-video 5.0 \
|
93 |
+
--save-path ${OUTPUT_BASEPATH} \
|
94 |
+
--use-fp8 \
|
95 |
+
--infer-min
|
96 |
+
```
|
97 |
+
|
98 |
+
### Run with very low VRAM
|
99 |
+
|
100 |
+
```bash
|
101 |
+
cd HunyuanVideo-Avatar
|
102 |
+
|
103 |
+
JOBS_DIR=$(dirname $(dirname "$0"))
|
104 |
+
export PYTHONPATH=./
|
105 |
+
|
106 |
+
export MODEL_BASE=./weights
|
107 |
+
OUTPUT_BASEPATH=./results-poor
|
108 |
+
|
109 |
+
checkpoint_path=${MODEL_BASE}/ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8.pt
|
110 |
+
|
111 |
+
export CPU_OFFLOAD=1
|
112 |
+
CUDA_VISIBLE_DEVICES=0 python3 hymm_sp/sample_gpu_poor.py \
|
113 |
+
--input 'assets/test.csv' \
|
114 |
+
--ckpt ${checkpoint_path} \
|
115 |
+
--sample-n-frames 129 \
|
116 |
+
--seed 128 \
|
117 |
+
--image-size 704 \
|
118 |
+
--cfg-scale 7.5 \
|
119 |
+
--infer-steps 50 \
|
120 |
+
--use-deepcache 1 \
|
121 |
+
--flow-shift-eval-video 5.0 \
|
122 |
+
--save-path ${OUTPUT_BASEPATH} \
|
123 |
+
--use-fp8 \
|
124 |
+
--cpu-offload \
|
125 |
+
--infer-min
|
126 |
+
```
|
127 |
+
|
128 |
+
|
129 |
+
## Run a Gradio Server
|
130 |
+
```bash
|
131 |
+
cd HunyuanVideo-Avatar
|
132 |
+
|
133 |
+
bash ./scripts/run_gradio.sh
|
134 |
+
|
135 |
+
```
|
136 |
+
|
137 |
+
## π BibTeX
|
138 |
+
|
139 |
+
If you find [HunyuanVideo-Avatar](https://arxiv.org/pdf/2505.20156) useful for your research and applications, please cite using this BibTeX:
|
140 |
+
|
141 |
+
```BibTeX
|
142 |
+
@misc{hu2025HunyuanVideo-Avatar,
|
143 |
+
title={HunyuanVideo-Avatar: High-Fidelity Audio-Driven Human Animation for Multiple Characters},
|
144 |
+
author={Yi Chen and Sen Liang and Zixiang Zhou and Ziyao Huang and Yifeng Ma and Junshu Tang and Qin Lin and Yuan Zhou and Qinglin Lu},
|
145 |
+
year={2025},
|
146 |
+
eprint={2505.20156},
|
147 |
+
archivePrefix={arXiv},
|
148 |
+
primaryClass={cs.CV},
|
149 |
+
url={https://arxiv.org/pdf/2505.20156},
|
150 |
+
}
|
151 |
+
```
|
152 |
+
|
153 |
+
## Acknowledgements
|
154 |
+
|
155 |
+
We would like to thank the contributors to the [HunyuanVideo](https://github.com/Tencent/HunyuanVideo), [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium), [FLUX](https://github.com/black-forest-labs/flux), [Llama](https://github.com/meta-llama/llama), [LLaVA](https://github.com/haotian-liu/LLaVA), [Xtuner](https://github.com/InternLM/xtuner), [diffusers](https://github.com/huggingface/diffusers) and [HuggingFace](https://huggingface.co) repositories, for their open research and exploration.
|