File size: 12,367 Bytes
e730386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@File    : apply.py
@Time    : 2023/8/8 下午4:22
@Author  : waytan
@Contact : [email protected]
@License : (C)Copyright 2023, Tencent
@Desc    : Apply
"""

from concurrent.futures import ThreadPoolExecutor
import torch
import os
import random
import typing as tp

import torch as th
from torch import nn
from torch.nn import functional as F
import tqdm

from .htdemucs import HTDemucs
from .audio import load_track, save_audio
from .utils import center_trim, DummyPoolExecutor

Model = tp.Union[HTDemucs]


class BagOfModels(nn.Module):
    def __init__(self, models: tp.List[Model],
                 weights: tp.Optional[tp.List[tp.List[float]]] = None,
                 segment: tp.Optional[float] = None):
        """
        Represents a bag of models with specific weights.
        You should call `apply_model` rather than calling directly the forward here for
        optimal performance.

        Args:
            models (list[nn.Module]): list of Demucs/HDemucs models.
            weights (list[list[float]]): list of weights. If None, assumed to
                be all ones, otherwise it should be a list of N list (N number of models),
                each containing S floats (S number of sources).
            segment (None or float): overrides the `segment` attribute of each model
                (this is performed inplace, be careful is you reuse the models passed).
        """
        super().__init__()
        assert len(models) > 0
        first = models[0]
        for other in models:
            assert other.sources == first.sources
            assert other.samplerate == first.samplerate
            assert other.audio_channels == first.audio_channels
            if segment is not None:
                other.segment = segment

        self.audio_channels = first.audio_channels
        self.samplerate = first.samplerate
        self.sources = first.sources
        self.models = nn.ModuleList(models)

        if weights is None:
            weights = [[1. for _ in first.sources] for _ in models]
        else:
            assert len(weights) == len(models)
            for weight in weights:
                assert len(weight) == len(first.sources)
        self.weights = weights

    @property
    def max_allowed_segment(self) -> float:
        max_allowed_segment = float('inf')
        for model in self.models:
            if isinstance(model, HTDemucs):
                max_allowed_segment = min(max_allowed_segment, float(model.segment))
        return max_allowed_segment

    def forward(self, x):
        raise NotImplementedError("Call `apply_model` on this.")
    
    def separate(self, source_file, output_dir, stem=None, device=None):
        wav, _ = load_track(source_file, self.audio_channels, self.samplerate)
        ref = wav.mean(0)
        wav -= ref.mean()
        wav /= ref.std()
        sources = apply_model(self, wav[None], device=device, shifts=1, split=True, overlap=0.25, 
                              progress=True, num_workers=0, segment=None)[0]
        sources *= ref.std()
        sources += ref.mean()

        output_paths = []
        name, ext = os.path.splitext(os.path.split(source_file)[-1])
        if ext != ".flac":
            ext = ".flac"
        kwargs = {
            'samplerate': self.samplerate,
            'bitrate': 320,
            'clip': "rescale",
            'as_float': False,
            'bits_per_sample': 16,
        }
        if stem is None:
            for source, stem in zip(sources, self.sources):
                output_stem_path = os.path.join(output_dir, f"{name}_{stem}{ext}")
                save_audio(source, output_stem_path, **kwargs)
                output_paths.append(output_stem_path)
        else:
            sources = list(sources)
            output_stem_path = os.path.join(output_dir, f"{name}_{stem}{ext}")
            save_audio(sources.pop(self.sources.index(stem)), output_stem_path, **kwargs)
            other_stem = torch.zeros_like(sources[0])
            for i in sources:
                other_stem += i
            output_no_stem_path = os.path.join(output_dir, f"{name}_no_{stem}{ext}")
            save_audio(other_stem, output_no_stem_path, **kwargs)
            output_paths = [output_stem_path, output_no_stem_path]

        return output_paths


class TensorChunk:
    def __init__(self, tensor, offset=0, length=None):
        total_length = tensor.shape[-1]
        assert offset >= 0
        assert offset < total_length

        if length is None:
            length = total_length - offset
        else:
            length = min(total_length - offset, length)

        if isinstance(tensor, TensorChunk):
            self.tensor = tensor.tensor
            self.offset = offset + tensor.offset
        else:
            self.tensor = tensor
            self.offset = offset
        self.length = length
        self.device = tensor.device

    @property
    def shape(self):
        shape = list(self.tensor.shape)
        shape[-1] = self.length
        return shape

    def padded(self, target_length):
        delta = target_length - self.length
        total_length = self.tensor.shape[-1]
        assert delta >= 0

        start = self.offset - delta // 2
        end = start + target_length

        correct_start = max(0, start)
        correct_end = min(total_length, end)

        pad_left = correct_start - start
        pad_right = end - correct_end

        out = F.pad(self.tensor[..., correct_start:correct_end], (pad_left, pad_right))
        assert out.shape[-1] == target_length
        return out


def tensor_chunk(tensor_or_chunk):
    if isinstance(tensor_or_chunk, TensorChunk):
        return tensor_or_chunk
    else:
        assert isinstance(tensor_or_chunk, th.Tensor)
        return TensorChunk(tensor_or_chunk)


def apply_model(model: tp.Union[BagOfModels, Model],
                mix: tp.Union[th.Tensor, TensorChunk],
                shifts: int = 1, split: bool = True,
                overlap: float = 0.25, transition_power: float = 1.,
                progress: bool = False, device=None,
                num_workers: int = 0, segment: tp.Optional[float] = None,
                pool=None) -> th.Tensor:
    """
    Apply model to a given mixture.

    Args:
        shifts (int): if > 0, will shift in time `mix` by a random amount between 0 and 0.5 sec
            and apply the oppositve shift to the output. This is repeated `shifts` time and
            all predictions are averaged. This effectively makes the model time equivariant
            and improves SDR by up to 0.2 points.
        split (bool): if True, the input will be broken down in 8 seconds extracts
            and predictions will be performed individually on each and concatenated.
            Useful for model with large memory footprint like Tasnet.
        progress (bool): if True, show a progress bar (requires split=True)
        device (torch.device, str, or None): if provided, device on which to
            execute the computation, otherwise `mix.device` is assumed.
            When `device` is different from `mix.device`, only local computations will
            be on `device`, while the entire tracks will be stored on `mix.device`.
        num_workers (int): if non zero, device is 'cpu', how many threads to
            use in parallel.
        segment (float or None): override the model segment parameter.
    """
    if device is None:
        device = mix.device
    else:
        device = th.device(device)
    if pool is None:
        if num_workers > 0 and device.type == 'cpu':
            pool = ThreadPoolExecutor(num_workers)
        else:
            pool = DummyPoolExecutor()
    kwargs: tp.Dict[str, tp.Any] = {
        'shifts': shifts,
        'split': split,
        'overlap': overlap,
        'transition_power': transition_power,
        'progress': progress,
        'device': device,
        'pool': pool,
        'segment': segment,
    }
    out: tp.Union[float, th.Tensor]
    if isinstance(model, BagOfModels):
        # Special treatment for bag of model.
        # We explicitely apply multiple times `apply_model` so that the random shifts
        # are different for each model.
        estimates: tp.Union[float, th.Tensor] = 0.
        totals = [0.] * len(model.sources)
        for sub_model, model_weights in zip(model.models, model.weights):
            original_model_device = next(iter(sub_model.parameters())).device
            sub_model.to(device)

            out = apply_model(sub_model, mix, **kwargs)
            sub_model.to(original_model_device)
            for k, inst_weight in enumerate(model_weights):
                out[:, k, :, :] *= inst_weight
                totals[k] += inst_weight
            estimates += out
            del out

        assert isinstance(estimates, th.Tensor)
        for k in range(estimates.shape[1]):
            estimates[:, k, :, :] /= totals[k]
        return estimates

    model.to(device)
    model.eval()
    assert transition_power >= 1, "transition_power < 1 leads to weird behavior."
    batch, channels, length = mix.shape
    if shifts:
        kwargs['shifts'] = 0
        max_shift = int(0.5 * model.samplerate)
        mix = tensor_chunk(mix)
        assert isinstance(mix, TensorChunk)
        padded_mix = mix.padded(length + 2 * max_shift)
        out = 0.
        for _ in range(shifts):
            offset = random.randint(0, max_shift)
            shifted = TensorChunk(padded_mix, offset, length + max_shift - offset)
            shifted_out = apply_model(model, shifted, **kwargs)
            out += shifted_out[..., max_shift - offset:]
        out /= shifts
        assert isinstance(out, th.Tensor)
        return out
    elif split:
        kwargs['split'] = False
        out = th.zeros(batch, len(model.sources), channels, length, device=mix.device)
        sum_weight = th.zeros(length, device=mix.device)
        if segment is None:
            segment = model.segment
        assert segment is not None and segment > 0.
        segment_length: int = int(model.samplerate * segment)
        stride = int((1 - overlap) * segment_length)
        offsets = range(0, length, stride)
        scale = float(format(stride / model.samplerate, ".2f"))
        # We start from a triangle shaped weight, with maximal weight in the middle
        # of the segment. Then we normalize and take to the power `transition_power`.
        # Large values of transition power will lead to sharper transitions.
        weight = th.cat([th.arange(1, segment_length // 2 + 1, device=device),
                         th.arange(segment_length - segment_length // 2, 0, -1, device=device)])
        assert len(weight) == segment_length
        # If the overlap < 50%, this will translate to linear transition when
        # transition_power is 1.
        weight = (weight / weight.max())**transition_power
        futures = []
        for offset in offsets:
            chunk = TensorChunk(mix, offset, segment_length)
            future = pool.submit(apply_model, model, chunk, **kwargs)
            futures.append((future, offset))
            offset += segment_length
        if progress:
            futures = tqdm.tqdm(futures, unit_scale=scale, ncols=120, unit='seconds')
        for future, offset in futures:
            chunk_out = future.result()
            chunk_length = chunk_out.shape[-1]
            out[..., offset:offset + segment_length] += (
                weight[:chunk_length] * chunk_out).to(mix.device)
            sum_weight[offset:offset + segment_length] += weight[:chunk_length].to(mix.device)
        assert sum_weight.min() > 0
        out /= sum_weight
        assert isinstance(out, th.Tensor)
        return out
    else:
        valid_length: int
        if isinstance(model, HTDemucs) and segment is not None:
            valid_length = int(segment * model.samplerate)
        elif hasattr(model, 'valid_length'):
            valid_length = model.valid_length(length)  # type: ignore
        else:
            valid_length = length
        mix = tensor_chunk(mix)
        assert isinstance(mix, TensorChunk)
        padded_mix = mix.padded(valid_length).to(device)
        with th.no_grad():
            out = model(padded_mix)
        assert isinstance(out, th.Tensor)
        return center_trim(out, length)