#!/usr/bin/env python # -*- coding: utf-8 -*- """ @File : states.py @Time : 2023/8/8 下午7:01 @Author : waytan @Contact : waytan@tencent.com @License : (C)Copyright 2023, Tencent @Desc : Utilities to save and load models. """ import functools import inspect import warnings from pathlib import Path from fractions import Fraction import torch def load_state_dict(net, pth_path): kwargs = {'sources': ['drums', 'bass', 'other', 'vocal'], 'audio_channels': 2, 'samplerate': 44100, 'segment': Fraction(39, 5), 'channels': 48, 'channels_time': None, 'growth': 2, 'nfft': 4096, 'wiener_iters': 0, 'end_iters': 0, 'wiener_residual': False, 'cac': True, 'depth': 4, 'rewrite': True, 'multi_freqs': [], 'multi_freqs_depth': 3, 'freq_emb': 0.2, 'emb_scale': 10, 'emb_smooth': True, 'kernel_size': 8, 'stride': 4, 'time_stride': 2, 'context': 1, 'context_enc': 0, 'norm_starts': 4, 'norm_groups': 4, 'dconv_mode': 3, 'dconv_depth': 2, 'dconv_comp': 8, 'dconv_init': 0.001, 'bottom_channels': 512, 't_layers': 5, 't_hidden_scale': 4.0, 't_heads': 8, 't_dropout': 0.02, 't_layer_scale': True, 't_gelu': True, 't_emb': 'sin', 't_max_positions': 10000, 't_max_period': 10000.0, 't_weight_pos_embed': 1.0, 't_cape_mean_normalize': True, 't_cape_augment': True, 't_cape_glob_loc_scale': [5000.0, 1.0, 1.4], 't_sin_random_shift': 0, 't_norm_in': True, 't_norm_in_group': False, 't_group_norm': False, 't_norm_first': True, 't_norm_out': True, 't_weight_decay': 0.0, 't_lr': None, 't_sparse_self_attn': False, 't_sparse_cross_attn': False, 't_mask_type': 'diag', 't_mask_random_seed': 42, 't_sparse_attn_window': 400, 't_global_window': 100, 't_sparsity': 0.95, 't_auto_sparsity': False, 't_cross_first': False, 'rescale': 0.1} model = net(**kwargs) state_dict = torch.load(pth_path) model.load_state_dict(state_dict) return model def load_model(path_or_package, strict=False): """Load a model from the given serialized model, either given as a dict (already loaded) or a path to a file on disk.""" if isinstance(path_or_package, dict): package = path_or_package elif isinstance(path_or_package, (str, Path)): with warnings.catch_warnings(): warnings.simplefilter("ignore") path = path_or_package package = torch.load(path, 'cpu') else: raise ValueError(f"Invalid type for {path_or_package}.") klass = package["klass"] args = package["args"] kwargs = package["kwargs"] if strict: model = klass(*args, **kwargs) else: sig = inspect.signature(klass) for key in list(kwargs): if key not in sig.parameters: warnings.warn("Dropping inexistant parameter " + key) del kwargs[key] model = klass(*args, **kwargs) state = package["state"] set_state(model, state) return model def get_state(model, quantizer, half=False): """Get the state from a model, potentially with quantization applied. If `half` is True, model are stored as half precision, which shouldn't impact performance but half the state size.""" if quantizer is None: dtype = torch.half if half else None state = {k: p.data.to(device='cpu', dtype=dtype) for k, p in model.state_dict().items()} else: state = quantizer.get_quantized_state() state['__quantized'] = True return state def set_state(model, state, quantizer=None): """Set the state on a given model.""" if state.get('__quantized'): quantizer.restore_quantized_state(model, state['quantized']) else: model.load_state_dict(state) return state def capture_init(init): @functools.wraps(init) def __init__(self, *args, **kwargs): self._init_args_kwargs = (args, kwargs) init(self, *args, **kwargs) return __init__