--- license: other license_name: stabilityai-ai-community license_link: LICENSE.md language: - en base_model: - stabilityai/stable-diffusion-3.5-medium pipeline_tag: text-to-image ---
**Bokeh_Pose_Controlnet**
## Description - Input Image: Images processed by openpose/dwpose detection - Output Image: Generated images with pose control Openpose enables precise human body structure control, demonstrating better control effects and generalization compared to sd1.5 cn in our tests, and can easily adapt to lora models ## Example | input | output | Prompt | |:---:|:---:|:---| | | | 1 girl , thinking | | | | a man | | | | a young woman in room,wear a brown short,golden short hair | | | | a man in room,wear a brown vintage shirt,1990s | ## Use We recommend using ComfyUI for local inference ![input](./comfy.png) # With Bokeh ```python import torch from diffusers import StableDiffusion3ControlNetPipeline from diffusers import SD3ControlNetModel from diffusers.utils import load_image controlnet = SD3ControlNetModel.from_pretrained("tensorart/Bokeh_Openpose_Controlnet") pipe = StableDiffusion3ControlNetPipeline.from_pretrained( "tensorart/bokeh_3.5_medium", controlnet=controlnet ) pipe.to("cuda", torch.float16) control_image = load_image("https://huggingface.co/tensorart/Bokeh_Pose_Control/resolve/main/images/001_pose.png") prompt = "A woman thinking" negative_prompt ="anime,render,cartoon,3d" negative_prompt_3="" image = pipe( prompt, num_inference_steps=30, negative_prompt=negative_prompt, control_image=control_image, height=1728, width=1152, guidance_scale=4, controlnet_conditioning_scale=0.8 ).images[0] image.save('image.jpg') ``` ## Contact * Website: https://tensor.art https://tusiart.com * Developed by: TensorArt * Api: https://tams.tensor.art/