PEFT
Safetensors
English
File size: 6,836 Bytes
211f5d5
726cede
211f5d5
746bbf4
 
 
 
5973efd
211f5d5
 
9b14f2c
211f5d5
5855292
211f5d5
5855292
211f5d5
5973efd
211f5d5
5855292
 
5973efd
5855292
5973efd
5855292
211f5d5
 
 
 
 
 
 
5973efd
 
 
 
5855292
211f5d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
---
base_model: tensorplex-labs/DOJO-INTERFACE-CODER-7B-SFT
library_name: peft
datasets:
- tensorplex-labs/Dojo-HumanFeedback-DPO
language:
- en
license: cc-by-4.0
---

# DOJO-INTERFACE-CODER-7B: First-of-its-kind Interface Generation Model Trained On High Quality Synthetic Data Curated Using Distributed Human Feedback

We are thrilled to release DOJO-INTERFACE-CODER-7B, a-first-of-its-kind Large Language Model (LLM) specialized in generating complex, interactive, and visually appealing frontend interfaces.

DOJO-INTERFACE-CODER-7B is trained on high quality synthetic data generated by state-of-the-art AI models. Data quality is further guaranteed using code verifiers, LLM-as-judge, and distributed human feedback.

Leveraging Dojo's distributed human feedback infrastructure, we curated two datasets:

- [Dojo-Synthetic-SFT](https://huggingface.co/datasets/tensorplex-labs/Dojo-Synthetic-SFT): A comprehensive dataset for supervised fine-tuning (SFT), filtered using LLM-as-judge.
- [Dojo-HumanFeedback-DPO](https://huggingface.co/datasets/tensorplex-labs/Dojo-HumanFeedback-DPO): A preference dataset for Direct Preference Optimization (DPO), curated using human feedback scores to align the model's output with human aesthetic and functional preferences.

Our development process followed a two-stage post-training methodology. We began with the powerful **Qwen2.5-Coder-7B-Instruct** as our base model. This foundation was then elevated through a supervised fine-tuning phase with Dojo-Synthetic-SFT, followed by a direct preference optimization stage using Dojo-HumanFeedback-DPO. This produced the final, highly specialized DOJO-INTERFACE-CODER-7B.

DOJO-INTERFACE-CODER-7B is capable of generating functional and visually appealing frontend, far exceeding the interface generation capabilities of its base model. Beyond its primary use case, the model demonstrates remarkable generalization against other benchmarks beyond MMLU, GSM8k, and HumanEval.

### Model Description

<!-- Provide a longer summary of what this model is. -->



- **Developed by:** Shi Jie Yu, Tensorplex Labs
- **Model type:** LoRA DPO
- **Language(s) (NLP):** English
- **License:** Creative Commons Attribution 4.0
- **Finetuned from model:** [tensorplex-labs/DOJO-INTERFACE-CODER-7B-SFT](https://huggingface.co/tensorplex-labs/DOJO-INTERFACE-CODER-7B-SFT)

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]
### Framework versions

- PEFT 0.15.2