File size: 1,813 Bytes
92f6acc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Writing logs to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/albert-base-v2-yelp_polarity-2020-07-02-10:35/log.txt.
Loading nlp dataset yelp_polarity, split train.
Loading nlp dataset yelp_polarity, split test.
Loaded dataset. Found: 2 labels: ([0, 1])
Loading transformers AutoModelForSequenceClassification: albert-base-v2
Tokenizing training data. (len: 560000)
Tokenizing eval data (len: 38000)
Loaded data and tokenized in 1196.1114358901978s
Training model across 4 GPUs
***** Running training *****
	Num examples = 560000
	Batch size = 16
	Max sequence length = 512
	Num steps = 175000
	Num epochs = 5
	Learning rate = 3e-05
Eval accuracy: 96.92368421052632%
Best acc found. Saved model to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/albert-base-v2-yelp_polarity-2020-07-02-10:35/.
Eval accuracy: 97.23947368421054%
Best acc found. Saved model to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/albert-base-v2-yelp_polarity-2020-07-02-10:35/.
Eval accuracy: 97.18947368421053%
Eval accuracy: 97.5078947368421%
Best acc found. Saved model to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/albert-base-v2-yelp_polarity-2020-07-02-10:35/.
Eval accuracy: 97.42894736842105%
Saved tokenizer <textattack.models.tokenizers.auto_tokenizer.AutoTokenizer object at 0x7f7e11b25fd0> to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/albert-base-v2-yelp_polarity-2020-07-02-10:35/.
Wrote README to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/albert-base-v2-yelp_polarity-2020-07-02-10:35/README.md.
Wrote training args to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/albert-base-v2-yelp_polarity-2020-07-02-10:35/train_args.json.