OpenCLIP (PE Core image + text) and timm PE Core, Spatial, Lang (ViT only) weights. NOTE: These weights do not work with original modeling code.
AI & ML interests
Computer Vision
Recent Activity
View all activity
Exploring ViT hparams and model shapes for the GPU poor (between tiny and base).
-
timm/vit_so150m2_patch16_reg1_gap_384.sbb_e200_in12k_ft_in1k
Image Classification • 0.1B • Updated • 111 • 2 -
timm/vit_so150m2_patch16_reg1_gap_256.sbb_e200_in12k_ft_in1k
Image Classification • 0.1B • Updated • 86 • 1 -
timm/vit_so150m2_patch16_reg1_gap_256.sbb_e200_in12k
Image Classification • 0.1B • Updated • 24 • 1 -
timm/vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k
Image Classification • 0.1B • Updated • 772 • 4
Weights for MobileNet-V4 pretrained in timm
-
timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k
Image Classification • 0.0B • Updated • 2.39k • 2 -
timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k
Image Classification • 0.0B • Updated • 309 • 1 -
timm/mobilenetv4_hybrid_large.ix_e600_r384_in1k
Image Classification • 0.0B • Updated • 644 • 5 -
timm/mobilenetv4_hybrid_large.e600_r384_in1k
Image Classification • 0.0B • Updated • 873 • 1
Not the most accurate, but the highest throughput image classification models in timm
-
timm/tinynet_e.in1k
Image Classification • 0.0B • Updated • 3.67k -
timm/mobilenetv3_small_050.lamb_in1k
Image Classification • 0.0B • Updated • 7.76k -
timm/lcnet_050.ra2_in1k
Image Classification • 0.0B • Updated • 21.3k -
timm/mobilenetv3_small_075.lamb_in1k
Image Classification • 0.0B • Updated • 5.43k • 1
timm includes the most popular convolutional and vision transformer models, many with new weights from updated training recipes.
Fastest image classification models with 80% accuracy in ImageNet-1k .
-
timm/levit_256.fb_dist_in1k
Image Classification • 0.0B • Updated • 30.9k -
timm/vit_base_patch32_clip_224.laion2b_ft_in1k
Image Classification • 0.1B • Updated • 78 -
timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k
Image Classification • 0.1B • Updated • 21.6k • 2 -
timm/vit_base_patch32_clip_224.openai_ft_in1k
Image Classification • 0.1B • Updated • 172
Fastest image classification models with 86% accuracy in ImageNet-1k .
-
timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k
Image Classification • 0.1B • Updated • 1.86k • 2 -
timm/beitv2_base_patch16_224.in1k_ft_in22k_in1k
Image Classification • 0.1B • Updated • 4.89k -
timm/convnext_base.clip_laion2b_augreg_ft_in12k_in1k
Image Classification • 0.1B • Updated • 9.67k -
timm/convnext_base.clip_laion2b_augreg_ft_in1k
Image Classification • 0.1B • Updated • 406
Pre-trained feature extraction backbones available in timm.
-
timm/vit_small_patch14_dinov2.lvd142m
Image Feature Extraction • 0.0B • Updated • 63.8k • 4 -
timm/vit_large_patch14_dinov2.lvd142m
Image Feature Extraction • 0.3B • Updated • 103k • 14 -
timm/vit_base_patch16_224.dino
Image Feature Extraction • 0.1B • Updated • 336k • 6 -
timm/vit_base_patch16_clip_224.openai
Image Feature Extraction • Updated • 275k • 9
Datasets for fine-tune benchmarking, hparam tuning. All vetted and tested with timm scripts.
OpenCLIP and timm SigLIP 2 models
-
timm/ViT-gopt-16-SigLIP2-384
Zero-Shot Image Classification • Updated • 11.8k • 3 -
timm/ViT-gopt-16-SigLIP2-256
Zero-Shot Image Classification • Updated • 335 -
timm/ViT-SO400M-16-SigLIP2-512
Zero-Shot Image Classification • Updated • 8.72k • 4 -
timm/ViT-SO400M-16-SigLIP2-384
Zero-Shot Image Classification • Updated • 50.6k • 3
MetaCLIP & MetaCLIP2 OpenCLIP and timm models. All models are dual timm + OpenCLIP (or just timm for specific vit encoders).
-
timm/vit_gigantic_patch14_clip_378.metaclip2_worldwide
Zero-Shot Image Classification • Updated • 38 -
timm/vit_gigantic_patch14_clip_224.metaclip2_worldwide
Zero-Shot Image Classification • Updated • 36 -
timm/vit_huge_patch14_clip_378.metaclip2_worldwide
Zero-Shot Image Classification • Updated • 28 -
timm/vit_huge_patch14_clip_224.metaclip2_worldwide
Zero-Shot Image Classification • Updated • 42
The 20 best models on ImageNet-1k validation set, all pretrained on datasets larger than ImageNet and fine-tuned on ImageNet-1k.
-
timm/eva02_large_patch14_448.mim_m38m_ft_in22k_in1k
Image Classification • 0.3B • Updated • 7.06k • 20 -
timm/eva02_large_patch14_448.mim_in22k_ft_in22k_in1k
Image Classification • 0.3B • Updated • 1.69k • 1 -
timm/eva_giant_patch14_560.m30m_ft_in22k_in1k
Image Classification • 1B • Updated • 1.64k • 3 -
timm/eva02_large_patch14_448.mim_m38m_ft_in1k
Image Classification • 0.3B • Updated • 2.23k • 13
timm has a number of unique and exclusive models trained on a 11821 (12k) subset of the full ImageNet-22k
-
timm/convnext_xxlarge.clip_laion2b_soup_ft_in12k
Image Classification • 0.9B • Updated • 782 • 2 -
timm/vit_huge_patch14_clip_224.laion2b_ft_in12k
Image Classification • 0.6B • Updated • 196 • 1 -
timm/vit_large_patch14_clip_224.openai_ft_in12k
Image Classification • 0.3B • Updated • 110 -
timm/vit_large_patch14_clip_224.laion2b_ft_in12k
Image Classification • 0.3B • Updated • 154
Fastest image classification models with 75.3% accuracy in ImageNet-1k .
-
timm/levit_128s.fb_dist_in1k
Image Classification • 0.0B • Updated • 2.03k • 2 -
timm/vit_small_patch32_224.augreg_in21k_ft_in1k
Image Classification • 0.0B • Updated • 10.1k • 2 -
timm/levit_128.fb_dist_in1k
Image Classification • 0.0B • Updated • 23k • 1 -
timm/efficientvit_m5.r224_in1k
Image Classification • 0.0B • Updated • 1.97k
Fastest image classification models with 83% accuracy in ImageNet-1k .
-
timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k
Image Classification • 0.1B • Updated • 21.6k • 2 -
timm/deit3_small_patch16_224.fb_in22k_ft_in1k
Image Classification • 0.0B • Updated • 1.66k -
timm/tiny_vit_11m_224.dist_in22k_ft_in1k
Image Classification • 0.0B • Updated • 259 -
timm/tresnet_m.miil_in21k_ft_in1k
Image Classification • 0.0B • Updated • 955
Fastest image classification models with 88% accuracy in ImageNet-1k .
-
timm/eva_large_patch14_196.in22k_ft_in22k_in1k
Image Classification • 0.3B • Updated • 21.1k • 2 -
timm/beitv2_large_patch16_224.in1k_ft_in22k_in1k
Image Classification • 0.3B • Updated • 2k • 2 -
timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k
Image Classification • 0.3B • Updated • 1.63k • 38 -
timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384
Image Classification • 0.2B • Updated • 2.15k • 3
Noteworthy instances of ImageNet on the Hub. Vetted and tested with timm train and validation scripts.
A collection of very small (~300-500k parameter) models at 160x160 resolution, for testing purposes. Trained on ImageNet-1k.
-
timm/test_byobnet.r160_in1k
Image Classification • 0.0B • Updated • 15.2k • 1 -
timm/test_convnext.r160_in1k
Image Classification • 0.0B • Updated • 17.3k -
timm/test_convnext2.r160_in1k
Image Classification • 0.0B • Updated • 14.5k -
timm/test_convnext3.r160_in1k
Image Classification • 0.0B • Updated • 14.4k • 1
OpenCLIP (PE Core image + text) and timm PE Core, Spatial, Lang (ViT only) weights. NOTE: These weights do not work with original modeling code.
OpenCLIP and timm SigLIP 2 models
-
timm/ViT-gopt-16-SigLIP2-384
Zero-Shot Image Classification • Updated • 11.8k • 3 -
timm/ViT-gopt-16-SigLIP2-256
Zero-Shot Image Classification • Updated • 335 -
timm/ViT-SO400M-16-SigLIP2-512
Zero-Shot Image Classification • Updated • 8.72k • 4 -
timm/ViT-SO400M-16-SigLIP2-384
Zero-Shot Image Classification • Updated • 50.6k • 3
Exploring ViT hparams and model shapes for the GPU poor (between tiny and base).
-
timm/vit_so150m2_patch16_reg1_gap_384.sbb_e200_in12k_ft_in1k
Image Classification • 0.1B • Updated • 111 • 2 -
timm/vit_so150m2_patch16_reg1_gap_256.sbb_e200_in12k_ft_in1k
Image Classification • 0.1B • Updated • 86 • 1 -
timm/vit_so150m2_patch16_reg1_gap_256.sbb_e200_in12k
Image Classification • 0.1B • Updated • 24 • 1 -
timm/vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k
Image Classification • 0.1B • Updated • 772 • 4
MetaCLIP & MetaCLIP2 OpenCLIP and timm models. All models are dual timm + OpenCLIP (or just timm for specific vit encoders).
-
timm/vit_gigantic_patch14_clip_378.metaclip2_worldwide
Zero-Shot Image Classification • Updated • 38 -
timm/vit_gigantic_patch14_clip_224.metaclip2_worldwide
Zero-Shot Image Classification • Updated • 36 -
timm/vit_huge_patch14_clip_378.metaclip2_worldwide
Zero-Shot Image Classification • Updated • 28 -
timm/vit_huge_patch14_clip_224.metaclip2_worldwide
Zero-Shot Image Classification • Updated • 42
Weights for MobileNet-V4 pretrained in timm
-
timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k
Image Classification • 0.0B • Updated • 2.39k • 2 -
timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k
Image Classification • 0.0B • Updated • 309 • 1 -
timm/mobilenetv4_hybrid_large.ix_e600_r384_in1k
Image Classification • 0.0B • Updated • 644 • 5 -
timm/mobilenetv4_hybrid_large.e600_r384_in1k
Image Classification • 0.0B • Updated • 873 • 1
The 20 best models on ImageNet-1k validation set, all pretrained on datasets larger than ImageNet and fine-tuned on ImageNet-1k.
-
timm/eva02_large_patch14_448.mim_m38m_ft_in22k_in1k
Image Classification • 0.3B • Updated • 7.06k • 20 -
timm/eva02_large_patch14_448.mim_in22k_ft_in22k_in1k
Image Classification • 0.3B • Updated • 1.69k • 1 -
timm/eva_giant_patch14_560.m30m_ft_in22k_in1k
Image Classification • 1B • Updated • 1.64k • 3 -
timm/eva02_large_patch14_448.mim_m38m_ft_in1k
Image Classification • 0.3B • Updated • 2.23k • 13
Not the most accurate, but the highest throughput image classification models in timm
-
timm/tinynet_e.in1k
Image Classification • 0.0B • Updated • 3.67k -
timm/mobilenetv3_small_050.lamb_in1k
Image Classification • 0.0B • Updated • 7.76k -
timm/lcnet_050.ra2_in1k
Image Classification • 0.0B • Updated • 21.3k -
timm/mobilenetv3_small_075.lamb_in1k
Image Classification • 0.0B • Updated • 5.43k • 1
timm has a number of unique and exclusive models trained on a 11821 (12k) subset of the full ImageNet-22k
-
timm/convnext_xxlarge.clip_laion2b_soup_ft_in12k
Image Classification • 0.9B • Updated • 782 • 2 -
timm/vit_huge_patch14_clip_224.laion2b_ft_in12k
Image Classification • 0.6B • Updated • 196 • 1 -
timm/vit_large_patch14_clip_224.openai_ft_in12k
Image Classification • 0.3B • Updated • 110 -
timm/vit_large_patch14_clip_224.laion2b_ft_in12k
Image Classification • 0.3B • Updated • 154
timm includes the most popular convolutional and vision transformer models, many with new weights from updated training recipes.
Fastest image classification models with 75.3% accuracy in ImageNet-1k .
-
timm/levit_128s.fb_dist_in1k
Image Classification • 0.0B • Updated • 2.03k • 2 -
timm/vit_small_patch32_224.augreg_in21k_ft_in1k
Image Classification • 0.0B • Updated • 10.1k • 2 -
timm/levit_128.fb_dist_in1k
Image Classification • 0.0B • Updated • 23k • 1 -
timm/efficientvit_m5.r224_in1k
Image Classification • 0.0B • Updated • 1.97k
Fastest image classification models with 80% accuracy in ImageNet-1k .
-
timm/levit_256.fb_dist_in1k
Image Classification • 0.0B • Updated • 30.9k -
timm/vit_base_patch32_clip_224.laion2b_ft_in1k
Image Classification • 0.1B • Updated • 78 -
timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k
Image Classification • 0.1B • Updated • 21.6k • 2 -
timm/vit_base_patch32_clip_224.openai_ft_in1k
Image Classification • 0.1B • Updated • 172
Fastest image classification models with 83% accuracy in ImageNet-1k .
-
timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k
Image Classification • 0.1B • Updated • 21.6k • 2 -
timm/deit3_small_patch16_224.fb_in22k_ft_in1k
Image Classification • 0.0B • Updated • 1.66k -
timm/tiny_vit_11m_224.dist_in22k_ft_in1k
Image Classification • 0.0B • Updated • 259 -
timm/tresnet_m.miil_in21k_ft_in1k
Image Classification • 0.0B • Updated • 955
Fastest image classification models with 86% accuracy in ImageNet-1k .
-
timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k
Image Classification • 0.1B • Updated • 1.86k • 2 -
timm/beitv2_base_patch16_224.in1k_ft_in22k_in1k
Image Classification • 0.1B • Updated • 4.89k -
timm/convnext_base.clip_laion2b_augreg_ft_in12k_in1k
Image Classification • 0.1B • Updated • 9.67k -
timm/convnext_base.clip_laion2b_augreg_ft_in1k
Image Classification • 0.1B • Updated • 406
Fastest image classification models with 88% accuracy in ImageNet-1k .
-
timm/eva_large_patch14_196.in22k_ft_in22k_in1k
Image Classification • 0.3B • Updated • 21.1k • 2 -
timm/beitv2_large_patch16_224.in1k_ft_in22k_in1k
Image Classification • 0.3B • Updated • 2k • 2 -
timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k
Image Classification • 0.3B • Updated • 1.63k • 38 -
timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384
Image Classification • 0.2B • Updated • 2.15k • 3
Pre-trained feature extraction backbones available in timm.
-
timm/vit_small_patch14_dinov2.lvd142m
Image Feature Extraction • 0.0B • Updated • 63.8k • 4 -
timm/vit_large_patch14_dinov2.lvd142m
Image Feature Extraction • 0.3B • Updated • 103k • 14 -
timm/vit_base_patch16_224.dino
Image Feature Extraction • 0.1B • Updated • 336k • 6 -
timm/vit_base_patch16_clip_224.openai
Image Feature Extraction • Updated • 275k • 9
Noteworthy instances of ImageNet on the Hub. Vetted and tested with timm train and validation scripts.
Datasets for fine-tune benchmarking, hparam tuning. All vetted and tested with timm scripts.
A collection of very small (~300-500k parameter) models at 160x160 resolution, for testing purposes. Trained on ImageNet-1k.
-
timm/test_byobnet.r160_in1k
Image Classification • 0.0B • Updated • 15.2k • 1 -
timm/test_convnext.r160_in1k
Image Classification • 0.0B • Updated • 17.3k -
timm/test_convnext2.r160_in1k
Image Classification • 0.0B • Updated • 14.5k -
timm/test_convnext3.r160_in1k
Image Classification • 0.0B • Updated • 14.4k • 1