File size: 2,853 Bytes
bd9afc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02ba5c6
bd9afc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02ba5c6
bd9afc9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
  - text: Hello!
    example_title: Hello world
    group: Python
base_model:
- openai/gpt-oss-120b
---

This tiny model is for debugging. It is randomly initialized with the config adapted from [openai/gpt-oss-120b](https://huggingface.co/openai/gpt-oss-120b).

Note: This model is in BF16; quantized MXFP4 FFN is not used.

### Example usage:

- vLLM

```bash
vllm serve tiny-random/gpt-oss
```

- Transformers

```python
import torch
from transformers import pipeline

model_id = "tiny-random/gpt-oss"

pipe = pipeline(
    "text-generation",
    model=model_id,
    torch_dtype=torch.bfloat16,
    device_map="cuda"
)

messages = [
    {"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]

outputs = pipe(
    messages,
    max_new_tokens=16,
)
print(outputs[0]["generated_text"][-1])
```

### Codes to create this repo:

```python
import json

import torch
from huggingface_hub import hf_hub_download
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoProcessor,
    AutoTokenizer,
    GenerationConfig,
    GptOssForCausalLM,
    pipeline,
    set_seed,
)

source_model_id = "openai/gpt-oss-120b"
save_folder = "/tmp/tiny-random/gpt-oss"

processor = AutoProcessor.from_pretrained(source_model_id)
processor.save_pretrained(save_folder)

with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r') as f:
    config_json = json.load(f)
config_json.update({
    "head_dim": 32,
    "hidden_size": 32,  # required by Mxfp4GptOssExperts codes
    "intermediate_size": 64,
    "layer_types": ["sliding_attention", "full_attention"],
    "num_attention_heads": 2,
    "num_hidden_layers": 2,
    "num_key_value_heads": 1,
    "num_local_experts": 32,
    "tie_word_embeddings": True,
})
quantization_config = config_json['quantization_config']
del config_json['quantization_config']
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)

config = AutoConfig.from_pretrained(save_folder)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config)
torch.set_default_dtype(torch.float32)
model.generation_config = GenerationConfig.from_pretrained(
    source_model_id, trust_remote_code=True,
)
set_seed(42)
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        torch.nn.init.normal_(p, 0, 0.1)
        print(name, p.shape)
model.save_pretrained(save_folder)

# mxfp4
from transformers.quantizers.quantizer_mxfp4 import Mxfp4HfQuantizer
# model = AutoModelForCausalLM.from_pretrained(save_folder, trust_remote_code=True, torch_dtype=torch.bfloat16, quantization_config=quantization_config)
# model.save_pretrained(save_folder, safe_serialization=True)
```