--- library_name: transformers base_model: - allenai/Olmo-3-32B-Think --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [allenai/Olmo-3-32B-Think](https://huggingface.co/allenai/Olmo-3-32B-Think). ### Example usage: ```python import os import re import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "tiny-random/olmo-3" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16) messages = [ {"role": "user", "content": "How to make pasta?" * 1500}, ] inputs = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", )['input_ids'] print(inputs.shape) outputs = model.generate(inputs.to( model.device), max_new_tokens=32) print(outputs) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, set_seed, ) source_model_id = "allenai/Olmo-3-32B-Think" save_folder = "/tmp/tiny-random/olmo-3" processor = AutoProcessor.from_pretrained( source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['hidden_size'] = 8 config_json['head_dim'] = 32 # vllm requirement config_json['intermediate_size'] = 32 config_json['num_attention_heads'] = 8 config_json['num_hidden_layers'] = 2 config_json['num_key_value_heads'] = 4 # better support tensor parallel config_json['tie_word_embeddings'] = False config_json['layer_types'] = ['sliding_attention', 'full_attention'] with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) model.generation_config.do_sample = True set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) ``` ### Printing the model: ```text Olmo3ForCausalLM( (model): Olmo3Model( (embed_tokens): Embedding(100278, 8, padding_idx=100277) (layers): ModuleList( (0-1): 2 x Olmo3DecoderLayer( (self_attn): Olmo3Attention( (q_proj): Linear(in_features=8, out_features=256, bias=False) (k_proj): Linear(in_features=8, out_features=128, bias=False) (v_proj): Linear(in_features=8, out_features=128, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) (q_norm): Olmo3RMSNorm((256,), eps=1e-06) (k_norm): Olmo3RMSNorm((128,), eps=1e-06) ) (mlp): Olmo3MLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLUActivation() ) (post_attention_layernorm): Olmo3RMSNorm((8,), eps=1e-06) (post_feedforward_layernorm): Olmo3RMSNorm((8,), eps=1e-06) ) ) (norm): Olmo3RMSNorm((8,), eps=1e-06) (rotary_emb): Olmo3RotaryEmbedding() ) (lm_head): Linear(in_features=8, out_features=100278, bias=False) ) ```