File size: 39,844 Bytes
cc69848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 |
# training with captions
# Swap blocks between CPU and GPU:
# This implementation is inspired by and based on the work of 2kpr.
# Many thanks to 2kpr for the original concept and implementation of memory-efficient offloading.
# The original idea has been adapted and extended to fit the current project's needs.
# Key features:
# - CPU offloading during forward and backward passes
# - Use of fused optimizer and grad_hook for efficient gradient processing
# - Per-block fused optimizer instances
import argparse
import copy
import math
import os
from multiprocessing import Value
import toml
from tqdm import tqdm
import torch
from .library.device_utils import init_ipex, clean_memory_on_device
init_ipex()
from accelerate.utils import set_seed
from .library import deepspeed_utils, flux_train_utils, flux_utils, strategy_base, strategy_flux
from .library.sd3_train_utils import FlowMatchEulerDiscreteScheduler
from .library import train_util as train_util
from .library.utils import setup_logging, add_logging_arguments
setup_logging()
import logging
logger = logging.getLogger(__name__)
from .library import config_util as config_util
from .library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
from .library.custom_train_functions import apply_masked_loss, add_custom_train_arguments
class FluxTrainer:
def __init__(self):
self.sample_prompts_te_outputs = None
def sample_images(self, epoch, global_step, validation_settings):
image_tensors = flux_train_utils.sample_images(
self.accelerator, self.args, epoch, global_step, self.unet, self.vae, self.text_encoder, self.sample_prompts_te_outputs, validation_settings)
return image_tensors
def init_train(self, args):
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
# sdxl_train_util.verify_sdxl_training_args(args)
deepspeed_utils.prepare_deepspeed_args(args)
setup_logging(args, reset=True)
# temporary: backward compatibility for deprecated options. remove in the future
if not args.skip_cache_check:
args.skip_cache_check = args.skip_latents_validity_check
if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs:
logger.warning(
"cache_text_encoder_outputs_to_disk is enabled, so cache_text_encoder_outputs is also enabled / cache_text_encoder_outputs_to_diskが有効になっているため、cache_text_encoder_outputsも有効になります"
)
args.cache_text_encoder_outputs = True
if args.cpu_offload_checkpointing and not args.gradient_checkpointing:
logger.warning(
"cpu_offload_checkpointing is enabled, so gradient_checkpointing is also enabled / cpu_offload_checkpointingが有効になっているため、gradient_checkpointingも有効になります"
)
args.gradient_checkpointing = True
assert (
args.blocks_to_swap is None or args.blocks_to_swap == 0
) or not args.cpu_offload_checkpointing, (
"blocks_to_swap is not supported with cpu_offload_checkpointing / blocks_to_swapはcpu_offload_checkpointingと併用できません"
)
cache_latents = args.cache_latents
use_dreambooth_method = args.in_json is None
if args.seed is not None:
set_seed(args.seed)
# prepare caching strategy: this must be set before preparing dataset. because dataset may use this strategy for initialization.
if args.cache_latents:
latents_caching_strategy = strategy_flux.FluxLatentsCachingStrategy(
args.cache_latents_to_disk, args.vae_batch_size, args.skip_latents_validity_check
)
strategy_base.LatentsCachingStrategy.set_strategy(latents_caching_strategy)
# Prepare the dataset
if args.dataset_class is None:
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, args.masked_loss, True))
if args.dataset_config is not None:
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "in_json"]
if any(getattr(args, attr) is not None for attr in ignored):
logger.warning(
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
if use_dreambooth_method:
logger.info("Using DreamBooth method.")
user_config = {
"datasets": [
{
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(
args.train_data_dir, args.reg_data_dir
)
}
]
}
else:
logger.info("Training with captions.")
user_config = {
"datasets": [
{
"subsets": [
{
"image_dir": args.train_data_dir,
"metadata_file": args.in_json,
}
]
}
]
}
blueprint = blueprint_generator.generate(user_config, args)
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
else:
train_dataset_group = train_util.load_arbitrary_dataset(args)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
train_dataset_group.verify_bucket_reso_steps(16) # TODO これでいいか確認
_, is_schnell, _, _ = flux_utils.analyze_checkpoint_state(args.pretrained_model_name_or_path)
if args.debug_dataset:
if args.cache_text_encoder_outputs:
strategy_base.TextEncoderOutputsCachingStrategy.set_strategy(
strategy_flux.FluxTextEncoderOutputsCachingStrategy(
args.cache_text_encoder_outputs_to_disk, args.text_encoder_batch_size, args.skip_cache_check, False
)
)
t5xxl_max_token_length = (
args.t5xxl_max_token_length if args.t5xxl_max_token_length is not None else (256 if is_schnell else 512)
)
strategy_base.TokenizeStrategy.set_strategy(strategy_flux.FluxTokenizeStrategy(t5xxl_max_token_length))
train_dataset_group.set_current_strategies()
train_util.debug_dataset(train_dataset_group, True)
return
if len(train_dataset_group) == 0:
logger.error(
"No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。"
)
return
if cache_latents:
assert (
train_dataset_group.is_latent_cacheable()
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
if args.cache_text_encoder_outputs:
assert (
train_dataset_group.is_text_encoder_output_cacheable()
), "when caching text encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / text encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"
# acceleratorを準備する
logger.info("prepare accelerator")
accelerator = train_util.prepare_accelerator(args)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
# load VAE for caching latents
ae = None
if cache_latents:
ae = flux_utils.load_ae(args.ae, weight_dtype, "cpu", args.disable_mmap_load_safetensors)
ae.to(accelerator.device, dtype=weight_dtype)
ae.requires_grad_(False)
ae.eval()
train_dataset_group.new_cache_latents(ae, accelerator)
ae.to("cpu") # if no sampling, vae can be deleted
clean_memory_on_device(accelerator.device)
accelerator.wait_for_everyone()
# prepare tokenize strategy
if args.t5xxl_max_token_length is None:
if is_schnell:
t5xxl_max_token_length = 256
else:
t5xxl_max_token_length = 512
else:
t5xxl_max_token_length = args.t5xxl_max_token_length
flux_tokenize_strategy = strategy_flux.FluxTokenizeStrategy(t5xxl_max_token_length)
strategy_base.TokenizeStrategy.set_strategy(flux_tokenize_strategy)
# load clip_l, t5xxl for caching text encoder outputs
clip_l = flux_utils.load_clip_l(args.clip_l, weight_dtype, "cpu", args.disable_mmap_load_safetensors)
t5xxl = flux_utils.load_t5xxl(args.t5xxl, weight_dtype, "cpu", args.disable_mmap_load_safetensors)
clip_l.eval()
t5xxl.eval()
clip_l.requires_grad_(False)
t5xxl.requires_grad_(False)
text_encoding_strategy = strategy_flux.FluxTextEncodingStrategy(args.apply_t5_attn_mask)
strategy_base.TextEncodingStrategy.set_strategy(text_encoding_strategy)
# cache text encoder outputs
sample_prompts_te_outputs = None
if args.cache_text_encoder_outputs:
# Text Encodes are eval and no grad here
clip_l.to(accelerator.device)
t5xxl.to(accelerator.device)
text_encoder_caching_strategy = strategy_flux.FluxTextEncoderOutputsCachingStrategy(
args.cache_text_encoder_outputs_to_disk, args.text_encoder_batch_size, False, False, args.apply_t5_attn_mask
)
strategy_base.TextEncoderOutputsCachingStrategy.set_strategy(text_encoder_caching_strategy)
with accelerator.autocast():
train_dataset_group.new_cache_text_encoder_outputs([clip_l, t5xxl], accelerator)
# cache sample prompt's embeddings to free text encoder's memory
if args.sample_prompts is not None:
logger.info(f"cache Text Encoder outputs for sample prompt: {args.sample_prompts}")
text_encoding_strategy: strategy_flux.FluxTextEncodingStrategy = strategy_base.TextEncodingStrategy.get_strategy()
prompts = []
for line in args.sample_prompts:
line = line.strip()
if len(line) > 0 and line[0] != "#":
prompts.append(line)
# preprocess prompts
for i in range(len(prompts)):
prompt_dict = prompts[i]
if isinstance(prompt_dict, str):
from .library.train_util import line_to_prompt_dict
prompt_dict = line_to_prompt_dict(prompt_dict)
prompts[i] = prompt_dict
assert isinstance(prompt_dict, dict)
# Adds an enumerator to the dict based on prompt position. Used later to name image files. Also cleanup of extra data in original prompt dict.
prompt_dict["enum"] = i
prompt_dict.pop("subset", None)
sample_prompts_te_outputs = {} # key: prompt, value: text encoder outputs
with accelerator.autocast(), torch.no_grad():
for prompt_dict in prompts:
for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", "")]:
if p not in sample_prompts_te_outputs:
logger.info(f"cache Text Encoder outputs for prompt: {p}")
tokens_and_masks = flux_tokenize_strategy.tokenize(p)
sample_prompts_te_outputs[p] = text_encoding_strategy.encode_tokens(
flux_tokenize_strategy, [clip_l, t5xxl], tokens_and_masks, args.apply_t5_attn_mask
)
self.sample_prompts_te_outputs = sample_prompts_te_outputs
accelerator.wait_for_everyone()
# now we can delete Text Encoders to free memory
clip_l = None
t5xxl = None
clean_memory_on_device(accelerator.device)
# load FLUX
_, flux = flux_utils.load_flow_model(
args.pretrained_model_name_or_path, weight_dtype, "cpu", args.disable_mmap_load_safetensors
)
if args.gradient_checkpointing:
flux.enable_gradient_checkpointing(cpu_offload=args.cpu_offload_checkpointing)
flux.requires_grad_(True)
# block swap
# backward compatibility
if args.blocks_to_swap is None:
blocks_to_swap = args.double_blocks_to_swap or 0
if args.single_blocks_to_swap is not None:
blocks_to_swap += args.single_blocks_to_swap // 2
if blocks_to_swap > 0:
logger.warning(
"double_blocks_to_swap and single_blocks_to_swap are deprecated. Use blocks_to_swap instead."
" / double_blocks_to_swapとsingle_blocks_to_swapは非推奨です。blocks_to_swapを使ってください。"
)
logger.info(
f"double_blocks_to_swap={args.double_blocks_to_swap} and single_blocks_to_swap={args.single_blocks_to_swap} are converted to blocks_to_swap={blocks_to_swap}."
)
args.blocks_to_swap = blocks_to_swap
del blocks_to_swap
self.is_swapping_blocks = args.blocks_to_swap is not None and args.blocks_to_swap > 0
if self.is_swapping_blocks:
# Swap blocks between CPU and GPU to reduce memory usage, in forward and backward passes.
# This idea is based on 2kpr's great work. Thank you!
logger.info(f"enable block swap: blocks_to_swap={args.blocks_to_swap}")
flux.enable_block_swap(args.blocks_to_swap, accelerator.device)
if not cache_latents:
# load VAE here if not cached
ae = flux_utils.load_ae(args.ae, weight_dtype, "cpu")
ae.requires_grad_(False)
ae.eval()
ae.to(accelerator.device, dtype=weight_dtype)
training_models = []
params_to_optimize = []
training_models.append(flux)
name_and_params = list(flux.named_parameters())
# single param group for now
params_to_optimize.append({"params": [p for _, p in name_and_params], "lr": args.learning_rate})
param_names = [[n for n, _ in name_and_params]]
# calculate number of trainable parameters
n_params = 0
for group in params_to_optimize:
for p in group["params"]:
n_params += p.numel()
accelerator.print(f"number of trainable parameters: {n_params}")
# 学習に必要なクラスを準備する
accelerator.print("prepare optimizer, data loader etc.")
if args.blockwise_fused_optimizers:
# fused backward pass: https://pytorch.org/tutorials/intermediate/optimizer_step_in_backward_tutorial.html
# Instead of creating an optimizer for all parameters as in the tutorial, we create an optimizer for each block of parameters.
# This balances memory usage and management complexity.
# split params into groups. currently different learning rates are not supported
grouped_params = []
param_group = {}
for group in params_to_optimize:
named_parameters = list(flux.named_parameters())
assert len(named_parameters) == len(group["params"]), "number of parameters does not match"
for p, np in zip(group["params"], named_parameters):
# determine target layer and block index for each parameter
block_type = "other" # double, single or other
if np[0].startswith("double_blocks"):
block_index = int(np[0].split(".")[1])
block_type = "double"
elif np[0].startswith("single_blocks"):
block_index = int(np[0].split(".")[1])
block_type = "single"
else:
block_index = -1
param_group_key = (block_type, block_index)
if param_group_key not in param_group:
param_group[param_group_key] = []
param_group[param_group_key].append(p)
block_types_and_indices = []
for param_group_key, param_group in param_group.items():
block_types_and_indices.append(param_group_key)
grouped_params.append({"params": param_group, "lr": args.learning_rate})
num_params = 0
for p in param_group:
num_params += p.numel()
accelerator.print(f"block {param_group_key}: {num_params} parameters")
# prepare optimizers for each group
optimizers = []
for group in grouped_params:
_, _, optimizer = train_util.get_optimizer(args, trainable_params=[group])
optimizers.append(optimizer)
optimizer = optimizers[0] # avoid error in the following code
logger.info(f"using {len(optimizers)} optimizers for blockwise fused optimizers")
if train_util.is_schedulefree_optimizer(optimizers[0], args):
raise ValueError("Schedule-free optimizer is not supported with blockwise fused optimizers")
self.optimizer_train_fn = lambda: None # dummy function
self.optimizer_eval_fn = lambda: None # dummy function
else:
_, _, optimizer = train_util.get_optimizer(args, trainable_params=params_to_optimize)
self.optimizer_train_fn, self.optimizer_eval_fn = train_util.get_optimizer_train_eval_fn(optimizer, args)
# prepare dataloader
# strategies are set here because they cannot be referenced in another process. Copy them with the dataset
# some strategies can be None
train_dataset_group.set_current_strategies()
# DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collator,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# 学習ステップ数を計算する
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
accelerator.print(
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
)
# データセット側にも学習ステップを送信
train_dataset_group.set_max_train_steps(args.max_train_steps)
# lr schedulerを用意する
if args.blockwise_fused_optimizers:
# prepare lr schedulers for each optimizer
lr_schedulers = [train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) for optimizer in optimizers]
lr_scheduler = lr_schedulers[0] # avoid error in the following code
else:
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
# 実験的機能:勾配も含めたfp16/bf16学習を行う モデル全体をfp16/bf16にする
if args.full_fp16:
assert (
args.mixed_precision == "fp16"
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
accelerator.print("enable full fp16 training.")
flux.to(weight_dtype)
if clip_l is not None:
clip_l.to(weight_dtype)
t5xxl.to(weight_dtype) # TODO check works with fp16 or not
elif args.full_bf16:
assert (
args.mixed_precision == "bf16"
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
accelerator.print("enable full bf16 training.")
flux.to(weight_dtype)
if clip_l is not None:
clip_l.to(weight_dtype)
t5xxl.to(weight_dtype)
# if we don't cache text encoder outputs, move them to device
if not args.cache_text_encoder_outputs:
clip_l.to(accelerator.device)
t5xxl.to(accelerator.device)
clean_memory_on_device(accelerator.device)
if args.deepspeed:
ds_model = deepspeed_utils.prepare_deepspeed_model(args, mmdit=flux)
# most of ZeRO stage uses optimizer partitioning, so we have to prepare optimizer and ds_model at the same time. # pull/1139#issuecomment-1986790007
ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
ds_model, optimizer, train_dataloader, lr_scheduler
)
training_models = [ds_model]
else:
# accelerator does some magic
# if we doesn't swap blocks, we can move the model to device
flux = accelerator.prepare(flux, device_placement=[not self.is_swapping_blocks])
if self.is_swapping_blocks:
accelerator.unwrap_model(flux).move_to_device_except_swap_blocks(accelerator.device) # reduce peak memory usage
optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler)
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
# During deepseed training, accelerate not handles fp16/bf16|mixed precision directly via scaler. Let deepspeed engine do.
# -> But we think it's ok to patch accelerator even if deepspeed is enabled.
train_util.patch_accelerator_for_fp16_training(accelerator)
# resumeする
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
if args.fused_backward_pass:
# use fused optimizer for backward pass: other optimizers will be supported in the future
from .library import adafactor_fused
adafactor_fused.patch_adafactor_fused(optimizer)
for param_group, param_name_group in zip(optimizer.param_groups, param_names):
for parameter, param_name in zip(param_group["params"], param_name_group):
if parameter.requires_grad:
def create_grad_hook(p_name, p_group):
def grad_hook(tensor: torch.Tensor):
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
accelerator.clip_grad_norm_(tensor, args.max_grad_norm)
optimizer.step_param(tensor, p_group)
tensor.grad = None
return grad_hook
parameter.register_post_accumulate_grad_hook(create_grad_hook(param_name, param_group))
elif args.blockwise_fused_optimizers:
# prepare for additional optimizers and lr schedulers
for i in range(1, len(optimizers)):
optimizers[i] = accelerator.prepare(optimizers[i])
lr_schedulers[i] = accelerator.prepare(lr_schedulers[i])
# counters are used to determine when to step the optimizer
global optimizer_hooked_count
global num_parameters_per_group
global parameter_optimizer_map
optimizer_hooked_count = {}
num_parameters_per_group = [0] * len(optimizers)
parameter_optimizer_map = {}
for opt_idx, optimizer in enumerate(optimizers):
for param_group in optimizer.param_groups:
for parameter in param_group["params"]:
if parameter.requires_grad:
def grad_hook(parameter: torch.Tensor):
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
accelerator.clip_grad_norm_(parameter, args.max_grad_norm)
i = parameter_optimizer_map[parameter]
optimizer_hooked_count[i] += 1
if optimizer_hooked_count[i] == num_parameters_per_group[i]:
optimizers[i].step()
optimizers[i].zero_grad(set_to_none=True)
parameter.register_post_accumulate_grad_hook(grad_hook)
parameter_optimizer_map[parameter] = opt_idx
num_parameters_per_group[opt_idx] += 1
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
# 学習する
# total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
accelerator.print("running training")
accelerator.print(f" num examples: {train_dataset_group.num_train_images}")
accelerator.print(f" num batches per epoch: {len(train_dataloader)}")
accelerator.print(f" num epochs: {num_train_epochs}")
accelerator.print(
f" batch size per device: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}"
)
# accelerator.print(
# f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}"
# )
accelerator.print(f" gradient accumulation steps = {args.gradient_accumulation_steps}")
accelerator.print(f" total optimization steps: {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
self.global_step = 0
noise_scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=args.discrete_flow_shift)
noise_scheduler_copy = copy.deepcopy(noise_scheduler)
if accelerator.is_main_process:
init_kwargs = {}
if args.wandb_run_name:
init_kwargs["wandb"] = {"name": args.wandb_run_name}
if args.log_tracker_config is not None:
init_kwargs = toml.load(args.log_tracker_config)
accelerator.init_trackers(
"finetuning" if args.log_tracker_name is None else args.log_tracker_name,
config=train_util.get_sanitized_config_or_none(args),
init_kwargs=init_kwargs,
)
if self.is_swapping_blocks:
accelerator.unwrap_model(flux).prepare_block_swap_before_forward()
# For --sample_at_first
#flux_train_utils.sample_images(accelerator, args, 0, global_step, flux, ae, [clip_l, t5xxl], sample_prompts_te_outputs)
self.loss_recorder = train_util.LossRecorder()
epoch = 0 # avoid error when max_train_steps is 0
self.tokens_and_masks = tokens_and_masks
self.num_train_epochs = num_train_epochs
self.current_epoch = current_epoch
self.args = args
self.accelerator = accelerator
self.unet = flux
self.vae = ae
self.text_encoder = [clip_l, t5xxl]
self.save_dtype = save_dtype
def training_loop(break_at_steps, epoch):
global optimizer_hooked_count
steps_done = 0
#accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
progress_bar.set_description(f"Epoch {epoch + 1}/{num_train_epochs} - steps")
current_epoch.value = epoch + 1
for m in training_models:
m.train()
for step, batch in enumerate(train_dataloader):
current_step.value = self.global_step
if args.blockwise_fused_optimizers:
optimizer_hooked_count = {i: 0 for i in range(len(optimizers))} # reset counter for each step
with accelerator.accumulate(*training_models):
if "latents" in batch and batch["latents"] is not None:
latents = batch["latents"].to(accelerator.device, dtype=weight_dtype)
else:
with torch.no_grad():
# encode images to latents. images are [-1, 1]
latents = ae.encode(batch["images"].to(ae.dtype)).to(accelerator.device, dtype=weight_dtype)
# NaNが含まれていれば警告を表示し0に置き換える
if torch.any(torch.isnan(latents)):
accelerator.print("NaN found in latents, replacing with zeros")
latents = torch.nan_to_num(latents, 0, out=latents)
text_encoder_outputs_list = batch.get("text_encoder_outputs_list", None)
if text_encoder_outputs_list is not None:
text_encoder_conds = text_encoder_outputs_list
else:
# not cached or training, so get from text encoders
tokens_and_masks = batch["input_ids_list"]
with torch.no_grad():
input_ids = [ids.to(accelerator.device) for ids in batch["input_ids_list"]]
text_encoder_conds = text_encoding_strategy.encode_tokens(
flux_tokenize_strategy, [clip_l, t5xxl], input_ids, args.apply_t5_attn_mask
)
if args.full_fp16:
text_encoder_conds = [c.to(weight_dtype) for c in text_encoder_conds]
# TODO support some features for noise implemented in get_noise_noisy_latents_and_timesteps
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# get noisy model input and timesteps
noisy_model_input, timesteps, sigmas = flux_train_utils.get_noisy_model_input_and_timesteps(
args, noise_scheduler_copy, latents, noise, accelerator.device, weight_dtype
)
# pack latents and get img_ids
packed_noisy_model_input = flux_utils.pack_latents(noisy_model_input) # b, c, h*2, w*2 -> b, h*w, c*4
packed_latent_height, packed_latent_width = noisy_model_input.shape[2] // 2, noisy_model_input.shape[3] // 2
img_ids = flux_utils.prepare_img_ids(bsz, packed_latent_height, packed_latent_width).to(device=accelerator.device)
# get guidance: ensure args.guidance_scale is float
guidance_vec = torch.full((bsz,), float(args.guidance_scale), device=accelerator.device)
# call model
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoder_conds
if not args.apply_t5_attn_mask:
t5_attn_mask = None
if args.bypass_flux_guidance:
flux_utils.bypass_flux_guidance(flux)
with accelerator.autocast():
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transformer model (we should not keep it but I want to keep the inputs same for the model for testing)
model_pred = flux(
img=packed_noisy_model_input,
img_ids=img_ids,
txt=t5_out,
txt_ids=txt_ids,
y=l_pooled,
timesteps=timesteps / 1000,
guidance=guidance_vec,
txt_attention_mask=t5_attn_mask,
)
# unpack latents
model_pred = flux_utils.unpack_latents(model_pred, packed_latent_height, packed_latent_width)
if args.bypass_flux_guidance:
flux_utils.restore_flux_guidance(flux)
# apply model prediction type
model_pred, weighting = flux_train_utils.apply_model_prediction_type(args, model_pred, noisy_model_input, sigmas)
# flow matching loss: this is different from SD3
target = noise - latents
# calculate loss
huber_c = train_util.get_huber_threshold_if_needed(args, timesteps, noise_scheduler)
loss = train_util.conditional_loss(model_pred.float(), target.float(), args.loss_type, "none", huber_c)
if weighting is not None:
loss = loss * weighting
if args.masked_loss or ("alpha_masks" in batch and batch["alpha_masks"] is not None):
loss = apply_masked_loss(loss, batch)
loss = loss.mean([1, 2, 3])
loss_weights = batch["loss_weights"] # 各sampleごとのweight
loss = loss * loss_weights
loss = loss.mean()
# backward
accelerator.backward(loss)
if not (args.fused_backward_pass or args.blockwise_fused_optimizers):
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
params_to_clip = []
for m in training_models:
params_to_clip.extend(m.parameters())
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
else:
# optimizer.step() and optimizer.zero_grad() are called in the optimizer hook
lr_scheduler.step()
if args.blockwise_fused_optimizers:
for i in range(1, len(optimizers)):
lr_schedulers[i].step()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
self.global_step += 1
current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
if len(accelerator.trackers) > 0:
logs = {"loss": current_loss}
train_util.append_lr_to_logs(logs, lr_scheduler, args.optimizer_type, including_unet=True)
accelerator.log(logs, step=self.global_step)
self.loss_recorder.add(epoch=epoch, step=step, loss=current_loss, global_step=self.global_step)
avr_loss: float = self.loss_recorder.moving_average
logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if self.global_step >= break_at_steps:
break
steps_done += 1
if len(accelerator.trackers) > 0:
logs = {"loss/epoch": self.loss_recorder.moving_average}
accelerator.log(logs, step=epoch + 1)
return steps_done
return training_loop
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
add_logging_arguments(parser)
train_util.add_sd_models_arguments(parser) # TODO split this
train_util.add_dataset_arguments(parser, True, True, True)
train_util.add_training_arguments(parser, False)
train_util.add_masked_loss_arguments(parser)
deepspeed_utils.add_deepspeed_arguments(parser)
train_util.add_sd_saving_arguments(parser)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
add_custom_train_arguments(parser) # TODO remove this from here
train_util.add_dit_training_arguments(parser)
flux_train_utils.add_flux_train_arguments(parser)
parser.add_argument(
"--mem_eff_save",
action="store_true",
help="[EXPERIMENTAL] use memory efficient custom model saving method / メモリ効率の良い独自のモデル保存方法を使う",
)
parser.add_argument(
"--fused_optimizer_groups",
type=int,
default=None,
help="**this option is not working** will be removed in the future / このオプションは動作しません。将来削除されます",
)
parser.add_argument(
"--blockwise_fused_optimizers",
action="store_true",
help="enable blockwise optimizers for fused backward pass and optimizer step / fused backward passとoptimizer step のためブロック単位のoptimizerを有効にする",
)
parser.add_argument(
"--skip_latents_validity_check",
action="store_true",
help="skip latents validity check / latentsの正当性チェックをスキップする",
)
parser.add_argument(
"--cpu_offload_checkpointing",
action="store_true",
help="[EXPERIMENTAL] enable offloading of tensors to CPU during checkpointing / チェックポイント時にテンソルをCPUにオフロードする",
)
return parser
|